Planning adaptive learning paths for students' progress throughout a course can be a challenging task, although it can be helpful for their learning progress. Within the HASKI-System, students should be able to get their own, personalized learning paths. In this paper, we present an approach towards the learning path sequencing problem. This idea is based on a novel proposal for arranging learning objects in a multi-dimensional space, bringing the relationship and similarities of these objects into a new relationship. We show, that we can use both, the Ant Colony Optimization Algorithm and the Genetic Algorithm with the idea of the Traveling-Salesman-Problem and get results, that are comparable with a proposed literature-based adaption mechanism. Nevertheless, the learning paths are all personalized based on the Felder & Silverman Learning Style Model and the hyperspace model will allow us later on to include more dimensions for other influencing factors.