DEEP LEARNING-BASED LAND USE LAND COVER SEGMENTATION OF HISTORICAL AERIAL IMAGES

被引:1
|
作者
Sertel, Elif [1 ]
Avci, Cengiz [1 ,2 ]
Kabadayi, Mustafa Erdem [2 ]
机构
[1] Istanbul Tech Univ, Dept Geomat Engn, TR-34469 Maslak, Turkiye
[2] Koc Univ, Dept Hist, TR-34450 Istanbul, Turkiye
基金
欧洲研究理事会;
关键词
LULC; historical aerial photographs; deep learning; segmentation;
D O I
10.1109/IGARSS52108.2023.10281819
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study aims to generate a new benchmark dataset from historical panchromatic aerial photographs suitable for deep learning-based Land use/Land cover (LULC) segmentation task. This new benchmark dataset spans a wide geographic area and consists of aerial photographs from various populous areas in Turkey and Bulgaria from the 1950s, 1960s, and 1970s. We implemented U-Net++ and Deeplabv3 segmentation architectures and appropriate hyperparameters and backbone structures to determine the applicability of this dataset, specifically for accurate and fast mapping of past terrain conditions. This unique historical LULC dataset and the different combinations of deep learning experiments proposed can be applied to different geographical regions with similar panchromatic datasets.
引用
收藏
页码:2622 / 2625
页数:4
相关论文
共 50 条
  • [31] SEMANTIC SEGMENTATION REFINEMENT WITH DEEP EDGE SUPERPIXELS TO ENHANCE HISTORICAL LAND COVER
    Ratajczak, Remi
    Crispim-Junior, Carlos
    Fervers, Beatrice
    Faure, Elodie
    Tougne, Laure
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1813 - 1816
  • [32] DEEP LEARNING-BASED SAR INTERFEROGRAM SYNTHESIS FROM RASTER AND LAND COVER DATA
    Sibler, Philipp
    Sica, Francescopaolo
    Schmitt, Michael
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5236 - 5239
  • [33] DIGITAL AERIAL IMAGES LAND COVER CLASSIFICATION BASED ON VEGETATION INDICES
    Dzieszko, Maciej
    Dzieszko, Piotr
    Krolewicz, Slawomir
    Cierniewski, Jerzy
    QUAESTIONES GEOGRAPHICAE, 2012, 31 (03) : 5 - 23
  • [34] Land Cover Classification Using Sematic Image Segmentation with Deep Learning
    Lee, Seonghyeok
    Kim, Jinsoo
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (02) : 279 - 288
  • [35] Multispectral Semantic Land Cover Segmentation From Aerial Imagery With Deep EncoderDecoder Network
    Liu, Chengxin
    Du, Shuaiyuan
    Lu, Hao
    Li, Dehui
    Cao, Zhiguo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images
    Tejasree, Ganji
    Agilandeeswari, L.
    Egyptian Journal of Remote Sensing and Space Science, 2024, 27 (01): : 52 - 68
  • [37] Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images
    Tejasree, Ganji
    Agilandeeswari, L.
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2024, 27 (01): : 52 - 68
  • [38] Land use/land cover change classification and prediction using deep learning approaches
    Ebenezer, P. Adlene
    Manohar, S.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 223 - 232
  • [39] EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification
    Helber, Patrick
    Bischke, Benjamin
    Dengel, Andreas
    Borth, Damian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (07) : 2217 - 2226
  • [40] Deep learning for land use and land cover classification from the Ecuadorian Paramo.
    Castelo-Cabay, Marco
    Piedra-Fernandez, Jose A.
    Ayala, Rosa
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2022, 15 (01) : 1001 - 1017