Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries

被引:110
|
作者
Liu, Yangyang [1 ]
Shi, Haodong [1 ]
Wu, Zhong-Shuai [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Catalysis, Dalian Inst Chem Phys, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERPHASE; SOLVATION SHEATH STRUCTURE; ELECTRICAL ENERGY-STORAGE; LI-ION; PROPYLENE CARBONATE; GRAPHITE/ELECTROLYTE INTERFACE; INTERCALATION COMPOUNDS; NATURAL GRAPHITE; POROUS GRAPHITE; HIGH-POWER;
D O I
10.1039/d3ee02213g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid growth of the global electric vehicle market and increasing demand for the enhanced user experience of portable electronics, the development of high-performance lithium-ion batteries (LIBs) with fast-charging capability has become an inevitable trend. However, there are critical technological obstacles for the utilization of mainstream graphite anodes in LIBs such as capacity degradation and safety hazards during fast-charging. Herein, this review summarizes the current advancements, fundamental principles, key strategies, and challenging perspectives related to graphite anodes for achieving fast-charging LIBs. First, by uncovering the lithium intercalation mechanism of graphite anodes and the enigmatic interface between graphite anodes and electrolytes, we analyze the main challenges faced by fast-charging graphite anodes. Then, we outline the key strategies for enabling fast-charging LIBs, focusing on graphite material design and electrolyte optimization. Finally, we propose promising research directions and key perspectives for fast-charging graphite anodes, providing inspiration for further commercialization of fast-charging LIBs.
引用
收藏
页码:4834 / 4871
页数:38
相关论文
共 50 条
  • [21] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yi Yang
    XiaLin Zhong
    Lei Xu
    ZhuoLin Yang
    Chong Yan
    JiaQi Huang
    Journal of Energy Chemistry, 2024, 97 (10) : 453 - 459
  • [22] Suppressing Deformation of Silicon Anodes via Interfacial Synthesis for Fast-Charging Lithium-Ion Batteries
    Lee, Taeyong
    Kim, Namhyung
    Lee, Jiyun
    Lee, Yoonkwang
    Sung, Jaekyung
    Kim, Hyeongjun
    Chae, Sujong
    Cha, Hyungyeon
    Son, Yeonguk
    Kwak, Sang Kyu
    Cho, Jaephil
    ADVANCED ENERGY MATERIALS, 2023, 13 (41)
  • [23] The principle and amelioration of lithium plating in fast-charging lithium-ion batteries
    Yang, Yi
    Zhong, Xia-Lin
    Xu, Lei
    Yang, Zhuo-Lin
    Yan, Chong
    Huang, Jia-Qi
    JOURNAL OF ENERGY CHEMISTRY, 2024, 97 : 453 - 459
  • [24] Increasing the Energy Density of Disordered Rock Salt Anodes for Fast-Charging Lithium-Ion Batteries
    Lin, Haichen
    Peng, Wei-Tao
    Wang, Zishen
    Hofmann, Jan
    Vornholt, Simon M.
    Liu, Haodong
    Wang, Shen
    Holoubek, John
    Zhou, Ke
    Miao, Qiushi
    Huber, Steven
    Chapman, Karena W.
    Ong, Shyue Ping
    Liu, Ping
    ACS MATERIALS LETTERS, 2025, 7 (02): : 699 - 706
  • [25] Research progress on electrolytes for fast-charging lithium-ion batteries
    Dan Zhang
    Le Li
    Weizhuo Zhang
    Minghui Cao
    Hengwei Qiu
    Xiaohui Ji
    Chinese Chemical Letters, 2023, 34 (01) : 114 - 120
  • [26] Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries
    Wang, Mengmeng
    Wang, Junru
    Xiao, Jingchao
    Ren, Naiqing
    Pan, Bicai
    Chen, Chu-sheng
    Chen, Chun-hua
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) : 16279 - 16288
  • [27] Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries
    Wang, Mengmeng
    Wang, Junru
    Xiao, Jingchao
    Ren, Naiqing
    Pan, Bicai
    Chen, Chu-Sheng
    Chen, Chun-Hua
    ACS Applied Materials and Interfaces, 2022, 14 (14): : 16279 - 16288
  • [28] Challenges and opportunities toward fast-charging of lithium-ion batteries
    Xie, Wenlong
    Liu, Xinhua
    He, Rong
    Li, Yalun
    Gao, Xinlei
    Li, Xinghu
    Peng, Zhaoxia
    Feng, Suwei
    Feng, Xuning
    Yang, Shichun
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [29] Amorphous Anode Materials for Fast-charging Lithium-ion Batteries
    Vishwanathan, Savithri
    Pandey, Harshit
    Ramakrishna Matte, H. S. S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (22)
  • [30] Research progress on electrolytes for fast-charging lithium-ion batteries
    Zhang, Dan
    Li, Le
    Zhang, Weizhuo
    Cao, Minghui
    Qiu, Hengwei
    Ji, Xiaohui
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)