Families of Almost Complex Structures and Transverse (p, p)-Forms

被引:3
|
作者
Hind, Richard [1 ]
Medori, Costantino [2 ]
Tomassini, Adriano [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Parma, Dipartimento Sci Matematiche Fis & Informat, Unita Matemat & Informat, Parco Area Sci 53-A, I-43124 Parma, Italy
关键词
Almost p-Kahler manifold; Almost complex deformation; Semi-Kahler metric; DEFORMATIONS; METRICS;
D O I
10.1007/s12220-023-01391-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Analmost p-Kahler manifold is a triple (M, J, Omega), where (M, J) is an almost complex manifold of real dimension 2n and Omega is a closed real transverse (p, p)-form on (M, J), where 1 <= p <= n. When J is integrable, almost p-Kahler manifolds are called p-Kahler manifolds. We produce families of almost p-Kahler structures (J(t), Omega(t)) on C-3, C-4, and on the real torus T-6, arising as deformations of Kahler structures (J(0), g(0), omega(0)), such that the almost complex structures Jt cannot be locally compatible with any symplectic form for t not equal 0. Furthermore, examples of special compact nilmanifolds with and without almost p-Kahler structures are presented.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] On the manifold of almost complex structures
    Daurtseva, NA
    MATHEMATICAL NOTES, 2005, 78 (1-2) : 59 - 63
  • [22] Biharmonic almost complex structures
    He, Weiyong
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [23] ON TWISTOR ALMOST COMPLEX STRUCTURES
    Cahen, Michel
    Gutt, Simone
    Rawnsley, John
    JOURNAL OF GEOMETRIC MECHANICS, 2021, 13 (03): : 313 - 331
  • [24] Polyharmonic Almost Complex Structures
    He, Weiyong
    Jiang, Ruiqi
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11648 - 11684
  • [25] Almost complex structures on spheres
    Konstantis, Panagiotis
    Parton, Maurizio
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 57 : 10 - 22
  • [26] p-adic families of modular forms and p-adic Abel-Jacobi maps
    Greenberg, Matthew
    Seveso, Marco Adamo
    ANNALES MATHEMATIQUES DU QUEBEC, 2016, 40 (02): : 397 - 434
  • [27] ARITHMETIC OF p-IRREGULAR MODULAR FORMS: FAMILIES AND p-ADIC L-FUNCTIONS
    Betina, Adel
    Williams, Chris
    MATHEMATIKA, 2021, 67 (04) : 917 - 948
  • [28] Comparative analysis and simulation of current relaxation in germanium p+-p-p+ structures of different geometrical forms
    Kletski, S.V.
    Piotrowski, T.
    Sikorski, S.
    Electron Technology (Warsaw), 1999, 32 (04): : 365 - 368
  • [29] A finiteness result for p-adic families of Bianchi modular forms
    Serban, Vlad
    JOURNAL OF NUMBER THEORY, 2022, 233 : 405 - 431
  • [30] A short note on p-adic families of Hilbert modular forms
    Pande, Aftab
    NEW YORK JOURNAL OF MATHEMATICS, 2013, 19 : 947 - 954