Composite finite volume schemes for the diffusion equation on unstructured meshes

被引:0
|
作者
Blanc, Xavier [1 ]
Hoch, Philippe [2 ]
Lasuen, Clement [2 ]
机构
[1] Sorbonne Univ, Univ Paris Cite, CNRS, Lab Jacques Louis LJLL, F-75006 Paris, France
[2] CEA, DAM, DIF, F-91297 Arpajon, France
关键词
Finite volume schemes; Diffusion equation; TENSOR COEFFICIENTS; MAXIMUM PRINCIPLE; APPROXIMATION; OPERATORS; DISCRETIZATION; CONVERGENCE; POSITIVITY; 2ND-ORDER;
D O I
10.1016/j.camwa.2023.12.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a finite volume scheme for the anisotropic diffusion equation. The scheme is based on a reformulation of the diffusion equation as an advection equation. We prove that it is first order consistent and stable under a parabolic CFL condition. We propose a second order extension with similar properties. We also propose a third order extension. Numerical tests are provided, confirming the expected properties of the scheme.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 50 条
  • [31] Finite volume scheme for 3-D nonlinear diffusion equations on unstructured tetrahedral meshes
    Yin, Dongsheng
    Du, Zhengping
    Lu, Jinfu
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2005, 45 (09): : 1263 - 1267
  • [32] The composite finite volume method on unstructured meshes for the two-dimensional shallow water equations
    Wang, JW
    Liu, RX
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 37 (08) : 933 - 949
  • [33] A family of quadratic finite volume element schemes for anisotropic diffusion problems on triangular meshes
    Zhou, Yanhui
    Wu, Jiming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 402
  • [34] A Parallel Finite Volume Scheme Preserving Positivity for Diffusion Equation on Distorted Meshes
    Sheng, Zhiqiang
    Yue, Jingyan
    Yuan, Guangwei
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 2159 - 2178
  • [35] Finite volume method for convection-diffusion-reaction equation on triangular meshes
    Phongthanapanich, S.
    Dechaumphai, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (06) : 716 - 727
  • [36] Monotone Finite Volume Scheme for Three Dimensional Diffusion Equation on Tetrahedral Meshes
    Lai, Xiang
    Sheng, Zhiqiang
    Yuan, Guangwei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (01) : 162 - 181
  • [37] Finite volume scheme for the lattice Boltzmann method on unstructured meshes
    Peng, GW
    Xi, HW
    Duncan, C
    Chou, SH
    PHYSICAL REVIEW E, 1999, 59 (04): : 4675 - 4682
  • [38] A collocated finite volume method for incompressible flow on unstructured meshes
    Yu, B
    Ozoe, H
    Tao, WQ
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2005, 5 (3-5): : 181 - 189
  • [39] A VANLEER FINITE VOLUME SCHEME FOR THE EULER EQUATIONS ON UNSTRUCTURED MESHES
    CHEVRIER, P
    GALLEY, H
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (02): : 183 - 201
  • [40] AN IMPROVED INTERPOLATION SCHEME FOR FINITE VOLUME SIMULATIONS ON UNSTRUCTURED MESHES
    Chenoweth, Samuel K. M.
    Soria, Julio
    Ooi, Andrew
    MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 803 - 830