Fabrication and characterization of superhydrophilic graphene-based electrospun membranes for efficient oil-water separation

被引:13
|
作者
Francis, Lijo [1 ]
Mohammed, Shabin [1 ]
Hashaikeh, Raed [1 ]
Hilal, Nidal [1 ]
机构
[1] New York Univ Abu Dhabi NYUAD, NYUAD Water Res Ctr WRC, Abu Dhabi Campus, Abu Dhabi 129188, U Arab Emirates
关键词
Electrospinning; Electrospraying; Graphene; Nanostructured membranes; Oil -water separation; Wastewater treatment; DESALINATION; PERFORMANCE;
D O I
10.1016/j.jwpe.2023.104066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research article investigates the fabrication of superhydrophilic graphene-based electrospun membranes for efficient oil-water separation. The study utilizes cellulose acetate (CA) as the base material for membrane fabrication, employing an electrospinning technique followed by the electrohydrodynamic atomization of gra-phene oxide (GO) to enhance their hydrophilicity. The surface morphology, water contact angle, and Fourier Transform Infrared (FTIR) spectra of the fabricated membranes were analyzed to assess their properties. The membrane characterization techniques revealed the successful integration of GO nanosheets on the surface of the highly porous interconnected nanofibrous matrix. The modified membranes exhibited superhydrophilicity and underwater oleophobicity. The water contact angle of the optimized GO-based electrospun CA membrane was reduced from 110 degrees to zero within 3 s. The performance of the membranes was evaluated through oil-water separation experiments using different types of oils (such as toluene, n-decane, and hexane) in water. The re-sults demonstrated that the graphene-based optimized membranes exhibited high separation efficiency (3820 LMH), with a water permeation flux as high as 65.5 % compared to CA membranes (2308 LMH). The efficiency of separation while using all three different oils with DI water was calculated to be >99.9 %. The study provides valuable insights into the use of graphene-based membranes for oil-water separation and highlights the potential of the electrohydrodynamic atomization technique for the surface modification of membranes. The developed membranes have great potential applications in various industries, including oil and gas, chemical, and waste-water treatment.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] An unusual superhydrophilic/superoleophobic sponge for oil-water separation
    Jingwei Lu
    Xiaotao Zhu
    Xiao Miao
    Bo Wang
    Yuanming Song
    Guina Ren
    Xiangming Li
    Frontiers of Materials Science, 2020, 14 : 341 - 350
  • [22] Design and fabrication of polydopamine based superhydrophobic fabrics for efficient oil-water separation
    Zhang, Jixi
    Zhang, Ligui
    Gong, Xiao
    SOFT MATTER, 2021, 17 (27) : 6542 - 6551
  • [23] Recent Developments and Advancements in Graphene-Based Technologies for Oil Spill Cleanup and Oil-Water Separation Processes
    Elhenawy, Salma
    Khraisheh, Majeda
    AlMomani, Fares
    Hassan, Mohammad K.
    Al-Ghouti, Mohammad A.
    Selvaraj, Rengaraj
    NANOMATERIALS, 2022, 12 (01)
  • [24] An unusual superhydrophilic/superoleophobic sponge for oil-water separation
    Lu, Jingwei
    Zhu, Xiaotao
    Miao, Xiao
    Wang, Bo
    Song, Yuanming
    Ren, Guina
    Li, Xiangming
    FRONTIERS OF MATERIALS SCIENCE, 2020, 14 (03) : 341 - 350
  • [25] Preparation of superhydrophilic polyimide fibrous membranes by electrostatic spinning fabrication for the efficient separation of oil-in-water emulsions
    Pei, Fuying
    Jia, Hongge
    Xu, Shuangping
    Zhang, Mingyu
    Qu, Yanqing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 322
  • [26] Facile fabrication of superhydrophilic and underwater superoleophobic nanofiber membranes for highly efficient separation of oil-in-water emulsion
    Obaid, M.
    Mohamed, Hend Omar
    Alayande, Abayomi Babatunde
    Kang, Yesol
    Ghaffour, Noreddine
    Kim, In S.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 272
  • [27] Bio-inspired fabrication of superhydrophilic and underwater superoleophobic alumina membranes for highly efficient oil/water separation
    Wenjin Zhou
    Mingyang Zhou
    Huapeng Zhang
    Hongyan Tang
    Journal of Coatings Technology and Research, 2021, 18 : 361 - 372
  • [28] Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation
    Cheng, Qiaoyun
    Ye, Dongdong
    Chang, Chunyu
    Zhang, Lina
    JOURNAL OF MEMBRANE SCIENCE, 2017, 525 : 1 - 8
  • [29] Superhydrophilic-superhydrophobic integrated system based on copper mesh for continuous and efficient oil-water separation
    Huang, Zhaohe
    Wang, Zhenzhong
    Wang, Shiqiang
    Shan, Xiaowen
    Yin, Shumeng
    Tao, Bin
    RSC ADVANCES, 2024, 14 (09) : 6064 - 6071
  • [30] Superhydrophilic and oleophobic sponges prepared based on Mussel-Inspired chemistry for efficient oil-water separation
    Sun, Jianteng
    Gao, Feng
    Hu, Jingwen
    Qi, Zhixian
    Huang, Yue
    Guo, Yonggui
    Chen, Ying
    Wei, Junfu
    Zhang, Huan
    Pang, Qianchan
    Wang, Huicai
    Zhang, Xiaoqing
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (03)