On inflation and axionic dark matter in a scaled gravity

被引:1
|
作者
Belhaj, A. [1 ]
Ennadifi, S. E. [2 ]
Lamaaoune, M. [1 ]
机构
[1] Univ Mohammed V Rabat, Fac Sci, Dept Phys, Equipe Sci Matiere & Rayonnement,ESMaR, Rabat, Morocco
[2] Univ Mohammed V Rabat, Fac Sci, LPHE MS, Rabat, Morocco
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2024年 / 139卷 / 02期
关键词
HUBBLE-SPACE-TELESCOPE; CP CONSERVATION; CONSTRAINTS; CONSTANT; FLATNESS; UNIVERSE; HORIZON;
D O I
10.1140/epjp/s13360-024-04965-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by the modified gravity theories F(R)not equal R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(R)\ne R$$\end{document} and inflationary physics, we first propose and investigate an inflation model in a scaled gravity F(R)=R+beta R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(R)=R\,+\beta R$$\end{document}, where beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is a dimensionless scaling parameter. The latter is also implemented in a particular potential V(phi)=M41-cos phi mu beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(\phi )=M<^>{4}\left[ 1-\cos \left( \frac{\phi }{\mu }\right) <^>{\beta }\right] $$\end{document} being considered to drive the inflation via a parameter coupling scenario. Using the slow-roll approximations, the gravity scale parameter beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is approached with respect to the range of the associated computed cosmological observables ns\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{s}$$\end{document} and r according to the recent Planck and BICEP/Keck data. Then, we discuss the axionic dark matter in the suggested gravity model by considering the case where the inflaton is taken to be identified with an axion-like field phi=fa theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =f_{a}\theta $$\end{document} with the decay constant fa=mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{a}=\mu $$\end{document}. Referring to the known data, the underlying inflation scale M is constrained to be much lower than the corresponding axion scale MMUCH LESS-THANfa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\ll f_{a}$$\end{document}.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Spin precession experiments for light axionic dark matter
    Graham, Peter W.
    Kaplan, David E.
    Mardon, Jeremy
    Rajendran, Surjeet
    Terrano, William A.
    Trahms, Lutz
    Wilkason, Thomas
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [22] Axionic hot dark matter in the hadronic axion window
    Moroi, T
    Murayama, H
    PHYSICS LETTERS B, 1998, 440 (1-2) : 69 - 76
  • [23] On axionic dark matter in Type IIA string theory
    Honecker, Gabriele
    Staessens, Wieland
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2014, 62 (02): : 115 - 151
  • [24] Two-component axionic dark matter halos
    Berman, Gennady P.
    Gorshkov, Vyacheslav N.
    Tsifrinovich, Vladimir, I
    Merkli, Marco
    Tereshchuk, Vladimir V.
    MODERN PHYSICS LETTERS A, 2020, 35 (26)
  • [25] Axionic co-genesis of baryon, dark matter and dark radiation
    Kwang Sik Jeong
    Fuminobu Takahashi
    Journal of High Energy Physics, 2013
  • [26] Cosmology with axionic-quintessence coupled with dark matter
    Kumar, Sumit
    Panda, Sudhakar
    Sen, Anjan A.
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (15)
  • [27] DARK MATTER AND INFLATION
    KRAUSS, LM
    GENERAL RELATIVITY AND GRAVITATION, 1985, 17 (01) : 89 - 94
  • [28] Axionic Dark Matter in a Bi-Metric Universe
    Maldonado, Carlos
    Mendez, Fernando
    UNIVERSE, 2023, 9 (10)
  • [29] Testing axionic dark matter during gravitational reheating
    Barman, Basabendu
    Datta, Arghyajit
    PHYSICAL REVIEW D, 2024, 109 (09)
  • [30] Axionic dark matter signatures in various halo models
    Vergados, J. D.
    Semertzidis, Y. K.
    NUCLEAR PHYSICS B, 2017, 915 : 10 - 18