A Measuring System for PM2.5 Concentration and Meteorological Parameters for a Multipoint Aerosol Monitoring Network in Yekaterinburg

被引:0
|
作者
Vasilyeva, D. E. [1 ,2 ]
Gulyaev, E. A. [1 ,2 ]
Imasu, R. [3 ]
Markelov, Yu. I. [2 ]
Matsumi, Y. [4 ]
Talovskaya, A. V. [5 ]
Shchelkanov, A. A. [1 ,2 ]
Gadelshin, V. M. [1 ,2 ]
机构
[1] Ural Fed Univ, Inst Phys & Technol, Ekaterinburg 620002, Russia
[2] Russian Acad Sci, Ural Branch, Inst Ind Ecol, Ekaterinburg 620990, Russia
[3] Univ Tokyo, Atmosphere & Ocean Res Inst, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778568, Japan
[4] Nagoya Univ, Inst Space Earth Environm Res, Furocho Chikusaku, Nagoya 4648601, Japan
[5] Natl Res Tomsk Polytech Univ, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
atmospheric aerosol; PM2.5; particles; optical sensor; Panasonic PM2.5; mass concentration; ecological monitoring; Ural region;
D O I
10.1134/S1024856023060210
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The outcome of the first tests of a measuring system designed for the monitoring of atmospheric aerosol and meteorological parameters is considered. Based on the measurement results from August 2022, the data of the system prototypes, a calibrated optical aerosol sensor, and the on-site meteorological station are compared. The revealed drawbacks of the system design are described. The plans to improve and extend the system capabilities are discussed. A blueprint of a future multipoint aerosol monitoring network in Yekaterinburg and its neighborhood is presented.
引用
收藏
页码:790 / 797
页数:8
相关论文
共 50 条
  • [31] Analysis of Atmospheric Pollutants and Meteorological Factors on PM2.5 Concentration and Temporal Variations in Harbin
    Gao, Xiuyan
    Ruan, Zhaohui
    Liu, Jiemei
    Chen, Qixiang
    Yuan, Yuan
    ATMOSPHERE, 2022, 13 (09)
  • [32] Variations in PM2.5 Surface Concentration in Moscow according to Observations at MSU Meteorological Observatory
    Gubanova D.P.
    Belikov I.B.
    Elansky N.F.
    Skorokhod A.I.
    Chubarova N.E.
    Atmospheric and Oceanic Optics, 2018, 31 (3) : 290 - 299
  • [33] Short-Term PM2.5 Concentration Prediction by Combining GNSS and Meteorological Factors
    Wen, Hongfeng
    Dang, Yamin
    Li, Liwei
    IEEE ACCESS, 2020, 8 : 115202 - 115216
  • [34] PM2.5 concentration prediction using deep learning in internet of things air monitoring system
    Bai, Wei
    Li, Fengying
    ENVIRONMENTAL ENGINEERING RESEARCH, 2023, 28 (01)
  • [35] Platinum concentration in PM2.5 in the Mexico City Metropolitan Area: relationship to meteorological conditions
    Garza-Galindo, Rodrigo
    Morton-Bermea, Ofelia
    Hernandez-Alvarez, Elizabeth
    Ordonez-Godinez, Sara L.
    Amador-Munoz, Omar
    Beramendi-Orosco, Laura
    Retama-Hernandez, Armando
    Miranda, Javier
    Rosas-Perez, Irma
    HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2020, 26 (05): : 1164 - 1174
  • [36] Estimation of PM2.5 concentration considering meteorological factors, policy, and interregional atmospheric transport
    J. Yang
    S. Liu
    Q. Geng
    G. Chen
    Y. Wang
    International Journal of Environmental Science and Technology, 2022, 19 : 8479 - 8490
  • [37] PM2.5 CONCENTRATION PREDICTION USING DEEP LEARNING IN AIR MONITORING
    Huang, Yi
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (12): : 13200 - 13211
  • [38] Correlation of fungi and endotoxin with PM2.5 and meteorological parameters in atmosphere of Sao Paulo, Brazil
    Degobbi, Cristiane
    Lopes, Fernanda D. T. Q. S.
    Carvalho-Oliveira, Regiani
    Munoz, Julian Esteban
    Saldiva, Paulo H. N.
    ATMOSPHERIC ENVIRONMENT, 2011, 45 (13) : 2277 - 2283
  • [39] RESEARCH ON THE MAIN SOURCES AND POLLUTION METEOROLOGICAL FACTORS OF PM2.5 BASED ON MONITORING STATISTICS
    Yang, Kun
    Cui, Yifeng
    Ding, Laixiao
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2022, 23 (02): : 495 - 501
  • [40] Prediction of Urban PM2.5 Concentration Based on Wavelet Neural Network
    Zhang, Shan
    Li, Xiaoli
    Li, Yang
    Mei, Jianxiang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 5514 - 5519