Bayesian Change Point Detection with Spike-and-Slab Priors

被引:0
|
作者
Cappello, Lorenzo [1 ]
Padilla, Oscar Hernan Madrid [2 ]
Palacios, Julia A. [3 ]
机构
[1] Univ Pompeu Fabra, Dept Econ & Business, Barcelona, Spain
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
[3] Stanford Univ, Dept Stat & Biomed Data Sci, Stanford, CA USA
关键词
Approximate inference; Optimality; Robust; Shrinkage; VARIABLE SELECTION; POSTERIOR DISTRIBUTIONS; TIME-SERIES; R PACKAGE; SHRINKAGE; MODELS; SEGMENTATION; HORSESHOE; CUSUM;
D O I
10.1080/10618600.2023.2182312
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the use of spike-and-slab priors for consistent estimation of the number of change points and their locations. Leveraging recent results in the variable selection literature, we show that an estimator based on spike-and-slab priors achieves optimal localization rate in the multiple offline change point detection problem. Based on this estimator, we propose a Bayesian change point detection method, which is one of the fastest Bayesian methodologies. We demonstrate through empirical work the good performance of our approach vis-a-vis some state-of-the-art benchmarks. Interestingly, despite having a Gaussian noise assumption, our approach is more robust to misspecification of the error terms than the competing methods in numerical experiments. for this article are available online.
引用
收藏
页码:1488 / 1500
页数:13
相关论文
共 50 条
  • [21] The Spike-and-Slab LASSO
    Rockova, Veronika
    George, Edward I.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (521) : 431 - 444
  • [22] BAYESIAN ESTIMATION OF SPARSE SIGNALS WITH A CONTINUOUS SPIKE-AND-SLAB PRIOR
    Rockova, Veronika
    [J]. ANNALS OF STATISTICS, 2018, 46 (01): : 401 - 437
  • [23] An Adaptive Bayesian Lasso Approach with Spike-and-Slab Priors to Identify Multiple Linear and Nonlinear Effects in Structural Equation Models
    Brandt, Holger
    Cambria, Jenna
    Kelava, Augustin
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (06) : 946 - 960
  • [24] REDOMA: Bayesian random-effects dose-optimization meta-analysis using spike-and-slab priors
    Yang, Cheng-Han
    Kwiatkowski, Evan
    Lee, J. Jack
    Lin, Ruitao
    [J]. STATISTICS IN MEDICINE, 2024, 43 (18) : 3484 - 3502
  • [25] Comparing Spike and Slab Priors for Bayesian Variable Selection
    Malsiner-Walli, Gertraud
    Wagner, Helga
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2011, 40 (04) : 241 - 264
  • [26] Online Bayesian Sparse Learning with Spike and Slab Priors
    Fang, Shikai
    Zhe, Shandian
    Lee, Kuang-chih
    Zhang, Kai
    Neville, Jennifer
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 142 - 151
  • [27] SPIKE-AND-SLAB LASSO BICLUSTERING
    Moran, Gemma E.
    Rockova, Veronika
    George, Edward, I
    [J]. ANNALS OF APPLIED STATISTICS, 2021, 15 (01): : 148 - 173
  • [28] MULTI-TASK IMAGE CLASSIFICATION VIA COLLABORATIVE, HIERARCHICAL SPIKE-AND-SLAB PRIORS
    Mousavi, Hojjat S.
    Srinivas, Umamahesh
    Monga, Vishal
    Suo, Yuanming
    Dao, Minh
    Tran, Trac D.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4236 - 4240
  • [29] Disjunct support spike-and-slab priors for variable selection in regression under quasi-sparseness
    Andrade, Daniel
    Fukumizu, Kenji
    [J]. STAT, 2020, 9 (01):
  • [30] Bayesian Quantile Regression Based on the Empirical Likelihood with Spike and Slab Priors
    Xi, Ruibin
    Li, Yunxiao
    Hu, Yiming
    [J]. BAYESIAN ANALYSIS, 2016, 11 (03): : 821 - 855