Bayesian Change Point Detection with Spike-and-Slab Priors

被引:0
|
作者
Cappello, Lorenzo [1 ]
Padilla, Oscar Hernan Madrid [2 ]
Palacios, Julia A. [3 ]
机构
[1] Univ Pompeu Fabra, Dept Econ & Business, Barcelona, Spain
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
[3] Stanford Univ, Dept Stat & Biomed Data Sci, Stanford, CA USA
关键词
Approximate inference; Optimality; Robust; Shrinkage; VARIABLE SELECTION; POSTERIOR DISTRIBUTIONS; TIME-SERIES; R PACKAGE; SHRINKAGE; MODELS; SEGMENTATION; HORSESHOE; CUSUM;
D O I
10.1080/10618600.2023.2182312
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the use of spike-and-slab priors for consistent estimation of the number of change points and their locations. Leveraging recent results in the variable selection literature, we show that an estimator based on spike-and-slab priors achieves optimal localization rate in the multiple offline change point detection problem. Based on this estimator, we propose a Bayesian change point detection method, which is one of the fastest Bayesian methodologies. We demonstrate through empirical work the good performance of our approach vis-a-vis some state-of-the-art benchmarks. Interestingly, despite having a Gaussian noise assumption, our approach is more robust to misspecification of the error terms than the competing methods in numerical experiments. for this article are available online.
引用
收藏
页码:1488 / 1500
页数:13
相关论文
共 50 条
  • [1] Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels
    Long, Da
    Xing, Wei
    Krishnapriyan, Aditi S.
    Kirby, Robert M.
    Zhe, Shandian
    Mahoney, Michael W.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [2] Bayesian Inference for Spatio-temporal Spike-and-Slab Priors
    Andersen, Michael Riis
    Vehtari, Aki
    Winther, Ole
    Hansen, Lars Kai
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [3] Negotiating multicollinearity with spike-and-slab priors
    Ročková V.
    George E.I.
    [J]. METRON, 2014, 72 (2) : 217 - 229
  • [4] Variable Fusion for Bayesian Linear Regression via Spike-and-slab Priors
    Wu, Shengyi
    Shimamura, Kaito
    Yoshikawa, Kohei
    Murayama, Kazuaki
    Kawano, Shuichi
    [J]. INTELLIGENT DECISION TECHNOLOGIES, KES-IDT 2021, 2021, 238 : 491 - 501
  • [5] Bayesian Bootstrap Spike-and-Slab LASSO
    Nie, Lizhen
    Rockova, Veronika
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (543) : 2013 - 2028
  • [6] Generalized Spike-and-Slab Priors for Bayesian Group Feature Selection Using Expectation Propagation
    Hernandez-Lobato, Daniel
    Miguel Hernandez-Lobato, Jose
    Dupont, Pierre
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1891 - 1945
  • [7] Dynamic Variable Selection with Spike-and-Slab Process Priors
    Rockova, Veronika
    McAlinn, Kenichiro
    [J]. BAYESIAN ANALYSIS, 2021, 16 (01): : 233 - 269
  • [8] Bayesian Joint Spike-and-Slab Graphical Lasso
    Li, Zehang Richard
    McCormick, Tyler H.
    Clark, Samuel J.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [9] Bayesian inference with spike-and-slab priors for differential item functioning detection in a multiple-group IRT tree model
    Chang, Yu-Wei
    Yang, Cheng-Xin
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (07) : 1416 - 1444
  • [10] Expectation propagation in linear regression models with spike-and-slab priors
    Miguel Hernandez-Lobato, Jose
    Hernandez-Lobato, Daniel
    Suarez, Alberto
    [J]. MACHINE LEARNING, 2015, 99 (03) : 437 - 487