Radiomics approach with deep learning for predicting T4 obstructive colorectal cancer using CT image

被引:2
|
作者
Pan, Lin [1 ]
He, Tian [1 ]
Huang, Zihan [2 ]
Chen, Shuai [3 ]
Zhang, Junrong [3 ]
Zheng, Shaohua [1 ]
Chen, Xianqiang [3 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
[2] Harbin Inst Technol, Sch Future Technol, Harbin 150000, Peoples R China
[3] Fujian Med Univ Union Hosp, Dept Emergency Surg, Fuzhou 350001, Peoples R China
基金
中国国家自然科学基金;
关键词
Obstructive colorectal cancer; Deep learning; Radiomics; ResNet; Peritumoral region; LYMPH-NODE METASTASIS; ARTIFICIAL-INTELLIGENCE; COMPUTED-TOMOGRAPHY; CLASSIFICATION; SIGNATURE; NETWORK; STAGE; MRI;
D O I
10.1007/s00261-023-03838-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Patients with T4 obstructive colorectal cancer (OCC) have a high mortality rate. Therefore, an accurate distinction between T4 and T1-T3 (NT4) in OCC is an important part of preoperative evaluation, especially in the emergency setting. This paper introduces three models of radiomics, deep learning, and deep learning-based radiomics to identify T4 OCC.Methods We established a dataset of computed tomography (CT) images of 164 patients with pathologically confirmed OCC, from which 2537 slides were extracted. First, since T4 tumors penetrate the bowel wall and involve adjacent organs, we explored whether the peritumoral region contributes to the assessment of T4 OCC. Furthermore, we visualized the radiomics and deep learning features using the t-distributed stochastic neighbor embedding technique (t-SNE). Finally, we built a merged model by fusing radiomic features with deep learning features. In this experiment, the performance of each model was evaluated by the area under the receiver operating characteristic curve (AUC).Results In the test cohort, the AUC values predicted by the radiomics model in the dilated region of interest (dROI) was 0.770. And the AUC value of the deep learning model with the patches extended 20-pixel reached 0.936. Combining the characteristics of radiomics and deep learning, our method achieved an AUC value of 0.947 in the T4 and non-T4 (NT4) classification, and increased the AUC value to 0.950 after the addition of clinical features.Conclusion The prediction results of our merged model of deep learning radiomics outperformed the deep learning model and significantly outperformed the radiomics model. The experimental results demonstrate that combining the peritumoral region improves the prediction performance of the radiomics model and the deep learning model.
引用
收藏
页码:1246 / 1259
页数:14
相关论文
共 50 条
  • [21] CT-Based Deep Learning Radiomics for Predicting Chemoradiation Treatment Response in Locally Advanced Rectal Cancer
    Fu, J.
    Wang, Z.
    Singhrao, K.
    Lewis, J.
    Qi, X.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [22] PREDICTING MUTATION STATUS AND RECURRENCE FREE SURVIVAL IN NON-SMALL CELL LUNG CANCER: A HIERARCHICAL CT RADIOMICS - DEEP LEARNING APPROACH
    Patel, Divek
    Cowan, Connor
    Prasanna, Prateek
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 882 - 885
  • [23] Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach
    Le, Elizabeth P. V.
    Wong, Mark Y. Z.
    Rundo, Leonardo
    Tarkin, Jason M.
    Evans, Nicholas R.
    Weir-McCall, Jonathan R.
    Chowdhury, Mohammed M.
    Coughlin, Patrick A.
    Pavey, Holly
    Zaccagna, Fulvio
    Wall, Chris
    Sriranjan, Rouchelle
    Corovic, Andrej
    Huang, Yuan
    Warburton, Elizabeth A.
    Sala, Evis
    Roberts, Michael
    Schonlieb, Carola-Bibiane
    Rudd, James H. F.
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2024, 13
  • [24] Effective deep learning approach for segmentation of pulmonary cancer in thoracic CT image
    Thangavel, Chitra
    Palanichamy, Jaganathan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [25] CT-Based Thyroid Cancer Diagnosis Using Deep Learning and Radiomics Fusion Method
    Dong, Y.
    Pan, J.
    Zhang, T.
    Zeng, Z.
    Zhang, Y.
    Yang, Z.
    Yin, F. F.
    Peng, T.
    Tang, C.
    Zhang, L.
    MEDICAL PHYSICS, 2024, 51 (09) : 6577 - 6578
  • [26] Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer
    Wang, Qiang
    Xu, Jianhua
    Wang, Anrong
    Chen, Yi
    Wang, Tian
    Chen, Danyu
    Zhang, Jiaxing
    Brismar, Torkel B. B.
    RADIOLOGIA MEDICA, 2023, 128 (02): : 136 - 148
  • [27] Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer
    Qiang Wang
    Jianhua Xu
    Anrong Wang
    Yi Chen
    Tian Wang
    Danyu Chen
    Jiaxing Zhang
    Torkel B. Brismar
    La radiologia medica, 2023, 128 : 136 - 148
  • [28] Image Based Lung Cancer Phenotyping with Deep-Learning Radiomics
    Chaunzwa, T.
    Xu, Y.
    Mak, R.
    Christiani, D.
    Lanuti, M.
    Shafer, A.
    Dia, N.
    Aerts, H.
    MEDICAL PHYSICS, 2018, 45 (06) : E165 - E165
  • [29] A Machine Learning and Radiomics Approach in Lung Cancer for Predicting Histological Subtype
    Brunetti, Antonio
    Altini, Nicola
    Buongiorno, Domenico
    Garolla, Emilio
    Corallo, Fabio
    Gravina, Matteo
    Bevilacqua, Vitoantonio
    Prencipe, Berardino
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [30] Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics
    Kim, Soyoung
    Lee, Jae-Hoon
    Park, Eun Jung
    Lee, Hye Sun
    Baik, Seung Hyuk
    Jeon, Tae Joo
    Lee, Kang Young
    Ryu, Young Hoon
    Kang, Jeonghyun
    YONSEI MEDICAL JOURNAL, 2023, 64 (05) : 320 - 326