A State-of-the-Art Computer Vision Adopting Non-Euclidean Deep-Learning Models

被引:0
|
作者
Chowdhury, Sakib H. [1 ]
Sany, Md. Robius [1 ]
Ahamed, Md. Hafiz [1 ]
Das, Sajal K. [1 ]
Badal, Faisal Rahman [1 ]
Das, Prangon [1 ]
Tasneem, Zinat [1 ]
Hasan, Md. Mehedi [1 ]
Islam, Md. Robiul [1 ]
Ali, Md. Firoj [1 ]
Abhi, Sarafat Hussain [1 ]
Islam, Md. Manirul [1 ]
Sarker, Subrata Kumar [1 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Mechatron Engn, Rajshahi, Bangladesh
关键词
CONVOLUTIONAL NEURAL-NETWORKS; GRAPH; CLASSIFICATION; SEGMENTATION; IMAGE; FIELD;
D O I
10.1155/2023/8674641
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A distance metric known as non-Euclidean distance deviates from the laws of Euclidean geometry, which is the geometry that governs most physical spaces. It is utilized when Euclidean distance is inappropriate, for as when dealing with curved surfaces or spaces with complex topologies. The ability to apply deep learning techniques to non-Euclidean domains including graphs, manifolds, and point clouds is made possible by non-Euclidean deep learning. The use of non-Euclidean deep learning is rapidly expanding to study real-world datasets that are intrinsically non-Euclidean. Over the years, numerous novel techniques have been introduced, each with its benefits and drawbacks. This paper provides a categorized archive of non-Euclidean approaches used in computer vision up to this point. It starts by outlining the context, pertinent information, and the development of the field's history. Modern state-of-the-art methods have been described briefly and categorized by application fields. It also highlights the model's shortcomings in tables and graphs and shows different real-world applicability. Overall, this work contributes to a collective information and performance comparison that will help enhance non-Euclidean deep-learning research and development in the future.
引用
下载
收藏
页数:33
相关论文
共 50 条
  • [21] A State-of-the-Art Survey on Deep Learning Theory and Architectures
    Alom, Md Zahangir
    Taha, Tarek M.
    Yakopcic, Chris
    Westberg, Stefan
    Sidike, Paheding
    Nasrin, Mst Shamima
    Hasan, Mahmudul
    Van Essen, Brian C.
    Awwal, Abdul A. S.
    Asari, Vijayan K.
    ELECTRONICS, 2019, 8 (03)
  • [22] State-of-the-Art Deep Learning in Cardiovascular Image Analysis
    Litjens, Geert
    Ciompi, Francesco
    Wolterink, Jelmer M.
    de Vos, Bob D.
    Leiner, Tim
    Teuwen, Jonas
    Isgum, Ivana
    JACC-CARDIOVASCULAR IMAGING, 2019, 12 (08) : 1549 - 1565
  • [23] Benchmarking State-of-the-Art Deep Learning Software Tools
    Shi, Shaohuai
    Wang, Qiang
    Xu, Pengfei
    Chu, Xiaowen
    2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD), 2016, : 99 - 104
  • [24] State-of-the-art computer vision techniques for automated sugarcane lodging classification
    Modi, Rajesh U.
    Chandel, Abhilash K.
    Chandel, Narendra S.
    Dubey, Kumkum
    Subeesh, A.
    Singh, Akhilesh K.
    Jat, Dilip
    Kancheti, Mrunalini
    FIELD CROPS RESEARCH, 2023, 291
  • [25] State-of-the-art review on deep learning in medical imaging
    Biswas, Mainak
    Kuppili, Venkatanareshbabu
    Saba, Luca
    Edla, Damodar Reddy
    Suri, Harman S.
    Cuadrado-Godia, Elisa
    Laird, John R.
    Marinhoe, Rui Tato
    Sanches, Joao M.
    Nicolaides, Andrew
    Suri, Jasjit S.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 : 392 - 426
  • [26] Deep learning and the electrocardiogram: review of the current state-of-the-art
    Somani, Sulaiman
    Russak, Adam J.
    Richter, Felix
    Zhao, Shan
    Vaid, Akhil
    Chaudhry, Fayzan
    De Freitas, Jessica K.
    Naik, Nidhi
    Miotto, Riccardo
    Nadkarni, Girish N.
    Narula, Jagat
    Argulian, Edgar
    Glicksberg, Benjamin S.
    EUROPACE, 2021, 23 (08): : 1179 - 1191
  • [27] Lithology mapping of stone heritage via state-of-the-art computer vision
    Hatir, Mehmet Ergun
    Ince, Ismail
    JOURNAL OF BUILDING ENGINEERING, 2021, 34
  • [28] Network Intrusion Detection: An Analytical Assessment Using Deep Learning and State-of-the-Art Machine Learning Models
    Md Al-Imran
    Shamim H. Ripon
    International Journal of Computational Intelligence Systems, 14
  • [29] Network Intrusion Detection: An Analytical Assessment Using Deep Learning and State-of-the-Art Machine Learning Models
    Al-Imran, Md
    Ripon, Shamim H.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [30] A Roadmap to Deep Learning: A State-of-the-Art Step Towards Machine Learning
    Garg, Dweepna
    Goel, Parth
    Kandaswamy, Gokulnath
    Ganatra, Amit
    Kotecha, Ketan
    ADVANCED INFORMATICS FOR COMPUTING RESEARCH, ICAICR 2018, PT I, 2019, 955 : 160 - 170