Conceptual design of the Gas Injection and Vacuum System for DTT NBI

被引:5
|
作者
Agostinetti, P. [1 ,2 ]
Dal Bello, S. [1 ]
Dinh, F. [3 ]
Ferrara, A.
Fincato, M. [1 ]
Grando, L. [1 ,2 ]
Mura, M. [3 ]
Murari, A. [1 ,2 ]
Sartori, E. [1 ,4 ]
Siragusa, M. [1 ]
Siviero, F. [3 ]
Veronese, F. [1 ,5 ]
机构
[1] Univ Padua, Consorzio RFX, Acciaierie Venete SpA, CNR,ENEA,INFN, Corso Stati Uniti 4, I-35127 Padua, Italy
[2] Inst Plasma Sci Technol Sect Padova, Corso Stati Uniti 4, I-35127 Padua, Italy
[3] SAES Getters SpA, Viale Italia 77, I-20045 Lainate, MI, Italy
[4] Univ Padua, Dept Management & Engn, Stradella S Nicola 3, I-36100 Vicenza, Italy
[5] Univ Padua, Dept Elect Engn, Via Gradenigo 6-A, I-35131 Padua, Italy
关键词
DTT; NBI; Vacuum; Gas; Injection; TEST FACILITY; POWER; PUMP;
D O I
10.1016/j.fusengdes.2023.113638
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Divertor Tokamak Test (DTT) is a new experimental facility whose construction is starting in Frascati, Rome, Italy; its main goals are improving the understanding of plasma-wall interactions and supporting the development of ITER and DEMO. DTT will be equipped with a Neutral Beam Injector (NBI) based on negative deuterium ions, designed to inject 10 MW of power to the tokamak. A fundamental system for the good operations of the DTT NBI will be its Gas injection and Vacuum System (GVS). Indeed, the efficiency of the entire NBI strongly depends on the good performance of its GVS.The GVS for DTT NBI will be composed of two systems working in parallel: a grounded section connected to the main vacuum vessel, and a high voltage part connected to the ion source vessel and working at -510 kV voltage. The grounded part will feature a fore vacuum system (given by screw and roots pumps) plus a high vacuum system based on turbo-molecular pumps located on the side walls of the vessel and Non-Evaporable Getter (NEG) pumps located inside the vessel on the upper and lower surfaces. On the other hand, the high voltage part will feature a fore vacuum system (given by two compact screw pumps mounted on the external surface for the ion source vessel) plus a high vacuum system based on turbo-molecular pumps also located on the sidewalls of the ion source vessel. A dedicated deuterium gas injection will feed the process gas to the ion source and the neutralizer.This paper gives a description of the conceptual design of the GVS for DTT NBI, and of the procedure followed to optimize this system considering the operational requirements and the other constraints of the DTT NBI.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Conceptual design of the DTT in-vessel equatorial coils
    Ambrosino, R.
    Albanese, R.
    Acampora, E.
    Castaldo, A.
    Crisanti, F.
    Iervolino, R.
    Lampasi, A.
    FUSION ENGINEERING AND DESIGN, 2023, 194
  • [22] Preliminary studies for the conceptual design of the quench detection system for the DTT TF superconducting magnets
    Fiamozzi Zignani C.
    Messina G.
    Morici L.
    Fusion Engineering and Design, 2021, 164
  • [23] Conceptual design of NBI beamline for VEST plasma heating
    Kim, T. S.
    In, S. R.
    Jeong, S. H.
    Park, M.
    Chang, D. H.
    Jung, B. K.
    Lee, K. W.
    FUSION ENGINEERING AND DESIGN, 2016, 109 : 411 - 415
  • [24] Comparative Analysis of Vacuum Feedthroughs for the DTT ICRH System
    Mirizzi, Francesco
    Ravera, Gianluca
    Ceccuzzi, Silvio
    Di Paolo, Franco
    Fantauzzi, Stefano
    Valletti, Lorenzo
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, : 3710 - 3713
  • [25] Conceptual Design and Modeling of the Toroidal Field Coils Circuit of DTT
    Zito, Pietro
    Tomassetti, Giordano
    Messina, Giuseppe
    Morici, Luigi
    Zignani, Chiarasole Fiamozzi
    Lampasi, Alessandro
    Ala, Guido
    Zizzo, Gaetano
    Lopes, Carmelo Riccardo
    20TH IEEE MEDITERRANEAN ELETROTECHNICAL CONFERENCE (IEEE MELECON 2020), 2020, : 617 - 622
  • [26] Improved Conceptual Design of the Beamline for the DTT Neutral Beam Injector
    Agostinetti, P.
    Benedetti, E.
    Bonifetto, R.
    Bonesso, M.
    Cavenago, M.
    Dal Bello, S.
    Dalla Palma, M.
    D'Ambrosio, D.
    Dima, R.
    Favero, G.
    Ferro, A.
    Fincato, M.
    Giorgetti, F.
    Granucci, G.
    Lombroni, R.
    Marconato, N.
    Marsilio, R.
    Murari, A.
    Patton, T.
    Pavei, M.
    Pepato, A.
    Pilan, N.
    Raffaelli, F.
    Rebesan, P.
    Recchia, M.
    Ripani, M.
    Romano, A.
    Sartori, E.
    Tinti, P.
    Valente, M.
    Variale, V.
    Ventura, G.
    Veronese, F.
    Zanino, R.
    Zavarise, G.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (11) : 4027 - 4032
  • [27] Conceptual design of the power supplies for DTT Neutral Beam Injector
    Ferro, Alberto
    Lucchini, Francesco
    Agostinetti, Piero
    Ratti, Daniele
    Granucci, Gustavo
    Romano, Afra
    Romano, Roberto
    Cucchiaro, Antonio
    Princiotta, Alessandro
    FUSION ENGINEERING AND DESIGN, 2021, 169
  • [28] Conceptual Design Studies of an HTS Insert for the DTT Central Solenoid
    Giannini, L.
    Muzzi, L.
    Celentano, G.
    De Marzi, G.
    Romanelli, G.
    Zoboli, L.
    Turtu, S.
    Di Zenobio, A.
    Califano, F.
    Della Corte, A.
    IEEE Transactions on Applied Superconductivity, 2022, 32 (04):
  • [29] Conceptual Design Studies of an HTS Insert for the DTT Central Solenoid
    Giannini, L.
    Muzzi, L.
    Celentano, G.
    De Marzi, G.
    Romanelli, G.
    Zoboli, L.
    Turtu, S.
    Di Zenobio, A.
    Califano, F.
    della Corte, A.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2022, 32 (04)
  • [30] Conceptual design of a collimated neutron flux monitor and spectrometer for DTT
    Cecconello, M.
    Conroy, S.
    Ericsson, G.
    Eriksson, J.
    Hjalmarsson, A.
    Sperduti, A.
    Casiraghi, I.
    Mantica, P.
    Vincenzi, P.
    Bolzonella, T.
    Agostinetti, P.
    Villari, R.
    FUSION ENGINEERING AND DESIGN, 2021, 167