Conceptual design of the Gas Injection and Vacuum System for DTT NBI

被引:5
|
作者
Agostinetti, P. [1 ,2 ]
Dal Bello, S. [1 ]
Dinh, F. [3 ]
Ferrara, A.
Fincato, M. [1 ]
Grando, L. [1 ,2 ]
Mura, M. [3 ]
Murari, A. [1 ,2 ]
Sartori, E. [1 ,4 ]
Siragusa, M. [1 ]
Siviero, F. [3 ]
Veronese, F. [1 ,5 ]
机构
[1] Univ Padua, Consorzio RFX, Acciaierie Venete SpA, CNR,ENEA,INFN, Corso Stati Uniti 4, I-35127 Padua, Italy
[2] Inst Plasma Sci Technol Sect Padova, Corso Stati Uniti 4, I-35127 Padua, Italy
[3] SAES Getters SpA, Viale Italia 77, I-20045 Lainate, MI, Italy
[4] Univ Padua, Dept Management & Engn, Stradella S Nicola 3, I-36100 Vicenza, Italy
[5] Univ Padua, Dept Elect Engn, Via Gradenigo 6-A, I-35131 Padua, Italy
关键词
DTT; NBI; Vacuum; Gas; Injection; TEST FACILITY; POWER; PUMP;
D O I
10.1016/j.fusengdes.2023.113638
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Divertor Tokamak Test (DTT) is a new experimental facility whose construction is starting in Frascati, Rome, Italy; its main goals are improving the understanding of plasma-wall interactions and supporting the development of ITER and DEMO. DTT will be equipped with a Neutral Beam Injector (NBI) based on negative deuterium ions, designed to inject 10 MW of power to the tokamak. A fundamental system for the good operations of the DTT NBI will be its Gas injection and Vacuum System (GVS). Indeed, the efficiency of the entire NBI strongly depends on the good performance of its GVS.The GVS for DTT NBI will be composed of two systems working in parallel: a grounded section connected to the main vacuum vessel, and a high voltage part connected to the ion source vessel and working at -510 kV voltage. The grounded part will feature a fore vacuum system (given by screw and roots pumps) plus a high vacuum system based on turbo-molecular pumps located on the side walls of the vessel and Non-Evaporable Getter (NEG) pumps located inside the vessel on the upper and lower surfaces. On the other hand, the high voltage part will feature a fore vacuum system (given by two compact screw pumps mounted on the external surface for the ion source vessel) plus a high vacuum system based on turbo-molecular pumps also located on the sidewalls of the ion source vessel. A dedicated deuterium gas injection will feed the process gas to the ion source and the neutralizer.This paper gives a description of the conceptual design of the GVS for DTT NBI, and of the procedure followed to optimize this system considering the operational requirements and the other constraints of the DTT NBI.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Conceptual Design of the ITER Gas Injection System
    Yang Yu
    Maruyama, S.
    Kiss, G.
    Li Wei
    Jiang Tao
    Li Bo
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (03) : 287 - 290
  • [2] Conceptual Design of the ITER Gas Injection System
    杨愚
    S.MARUYAMA
    G.KISS
    李伟
    江涛
    李波
    Plasma Science and Technology, 2013, (03) : 287 - 290
  • [3] Conceptual Design of the ITER Gas Injection System
    杨愚
    SMARUYAMA
    GKISS
    李伟
    江涛
    李波
    Plasma Science and Technology, 2013, 15 (03) : 287 - 290
  • [4] The DTT device: Advances in conceptual design of vacuum vessel and cryostat structures
    Di Gironimo, Giuseppe
    Marzullo, Domenico
    Mozzillo, Rocco
    Tarallo, Andrea
    Grazioso, Stanislao
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 2483 - 2488
  • [5] DTT device: Conceptual design of the superconducting magnet system
    Di Zenobio, A.
    Albanese, R.
    Anemona, A.
    Biancolini, M. E.
    Bonifetto, R.
    Brutti, C.
    Corato, V.
    Crisanti, F.
    della Corte, A.
    De Marzi, G.
    Zignani, C. Fiamozzi
    Giorgetti, F.
    Messina, G.
    Muzzi, L.
    Savoldi, L.
    Tomassetti, G.
    Turtu, S.
    Villone, F.
    Zappatore, A.
    FUSION ENGINEERING AND DESIGN, 2017, 122 : 299 - 312
  • [6] Preliminary conceptual design of the DTT EC heating system
    Garavaglia, Saul
    Granucci, Gustavo
    Bruschi, Alessandro
    Fanale, Francesco
    Farina, Daniela
    Figini, Lorenzo
    Moro, Alessandro
    Nowak, Silvana
    Ricci, Daria
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 203 - 206
  • [7] Progress on the conceptual design of the antennas for the DTT ECRH system
    Fanale, F.
    Baiocchi, B.
    Bruschi, A.
    Busi, D.
    Bussolan, A.
    Figini, L.
    Garavaglia, S.
    Granucci, G.
    Romano, A.
    FUSION ENGINEERING AND DESIGN, 2023, 192
  • [8] Guidelines and Conceptual Design of the Grounding System of the DTT Experimental Facility
    Lopes, C. R.
    Terlizzi, C.
    Romano, R.
    Ala, G.
    Zizzo, G.
    Zito, P.
    Bifaretti, S.
    Bonaiuto, V
    Lampasi, A.
    2022 IEEE 21ST MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (IEEE MELECON 2022), 2022, : 489 - 494
  • [9] SPIDER gas injection and vacuum system: From design to commissioning
    Dal Bello, S.
    Fincato, M.
    Breda, M.
    Grando, L.
    Luchetta, A.
    Simionato, P.
    Zaccaria, P.
    Bragulat, E.
    Paolucci, F.
    Svensson, L.
    Buffa, F.
    Principe, A.
    Siroti, F.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 1485 - 1489
  • [10] A conceptual system design study for an NBI beamline for the European DEMO
    Hopf, C.
    Starnella, G.
    den Harder, N.
    Heinemann, B.
    Fantz, U.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 705 - 708