Hall-Littlewood Polynomials, Boundaries, and p-Adic Random Matrices

被引:5
|
作者
Van Peski, Roger [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
GELFAND-TSETLIN GRAPH; REPRESENTATIONS; HEURISTICS; CHARACTERS; JACOBIANS;
D O I
10.1093/imrn/rnac143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the boundary of the Hall-Littlewood t-deformation of the Gelfand-Tsetlin graph is parametrized by infinite integer signatures, extending results of Gorin [23] and Cuenca [15] on boundaries of related deformed Gelfand-Tsetlin graphs. In the special case when 1/t is a prime p, we use this to recover results of Bufetov and Qiu [12] and Assiotis [1] on infinite p-adic random matrices, placing them in the general context of branching graphs derived from symmetric functions. Our methods rely on explicit formulas for certain skew Hall-Littlewood polynomials. As a separate corollary to these, we obtain a simple expression for the joint distribution of the cokernels of products A(1), A(2)A(1), A(3)A(2)A(1), ... of independent Haar-distributed matrices A(i) over Z(p), generalizing the explicit formula for the classical Cohen-Lenstra measure.
引用
收藏
页码:11217 / 11275
页数:59
相关论文
共 50 条
  • [41] HALL-LITTLEWOOD POLYNOMIALS AND A HECKE ACTION ON ORDERED SET PARTITIONS
    Huang, Jia
    Rhoades, Brendon
    Scrimshaw, Travis
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) : 1839 - 1850
  • [42] A generalization of Kawanaka’s identity for Hall-Littlewood polynomials and applications
    Masao Ishikawa
    Frédéric Jouhet
    Jiang Zeng
    Journal of Algebraic Combinatorics, 2006, 23 : 395 - 412
  • [43] Hall-Littlewood polynomials, alcove walks, and fillings of Young diagrams
    Lenart, Cristian
    DISCRETE MATHEMATICS, 2011, 311 (04) : 258 - 275
  • [44] Finite-Dimensional Orthogonality Structures for Hall-Littlewood Polynomials
    J. F. van Diejen
    Acta Applicandae Mathematicae, 2007, 99 : 301 - 308
  • [45] The expected number of zeros of a random system of p-adic polynomials
    Evans, Steven N.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2006, 11 : 278 - 290
  • [46] P-ADIC ZEROS OF POLYNOMIALS
    LIPSHITZ, L
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 : 208 - 214
  • [47] p-adic Taylor Polynomials
    Nagel, Enno
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (03): : 643 - 669
  • [48] On geometry of p-adic polynomials
    Zelenov, E., I
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (20-21):
  • [49] KPZ and Airy limits of Hall-Littlewood random plane partitions
    Dimitrov, Evgeni
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02): : 640 - 693
  • [50] HALL-LITTLEWOOD FUNCTIONS AND KOSTKA-FOULKES POLYNOMIALS AT ROOTS OF UNITY
    LASCOUX, A
    LECLERC, B
    THIBON, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (01): : 1 - 6