Deep learning radiomics analysis based on computed tomography for survival prediction in gastric neuroendocrine neoplasm: a multicenter study

被引:2
|
作者
Yang, Zhihao [1 ,2 ]
Han, Yijing [1 ,2 ]
Li, Fei [3 ]
Zhang, Anqi [1 ,2 ]
Cheng, Ming [4 ]
Gao, Jianbo [1 ,2 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Radiol, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Henan Key Lab Image Diag & Treatment Digest Syst T, Zhengzhou, Peoples R China
[3] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan, Peoples R China
[4] Zhengzhou Univ, Affiliated Hosp 1, Dept Med Informat, 1 Jianshe East Rd, Zhengzhou 450052, Peoples R China
关键词
Gastric neuroendocrine neoplasm (gNEN); survival analysis; computed tomography (CT); deep learning (DL); radiomics nomogram; CARCINOMA; CANCER; DIAGNOSTICS; PROGNOSIS; NOMOGRAM; HAZARDS; MODEL; G3;
D O I
10.21037/qims-23-577
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Survival prediction is crucial for patients with gastric neuroendocrine neoplasms (gNENs) to assess the treatment programs and may guide personalized medicine. This study aimed to develop and evaluate a deep learning (DL) radiomics model to predict the overall survival (OS) in patients with gNENs.Methods: The retrospective analysis included 162 consecutive patients with gNENs from two hospitals, who were divided into a training cohort, internal validation cohort (The First Affiliated Hospital of Zhengzhou University; n=108), and an external validation cohort (The Henan Cancer Hospital; n=54). DL radiomics analysis was applied to computed tomography (CT) images of the arterial phase and venous phase, respectively. Based on pretreatment CT images, two DL radiomics signatures were developed to predict OS. The combined model incorporating the radiomics signatures and clinical factors was built through the multivariable Cox proportional hazards (CPH) method. The combined model was visualized into a radiomics nomogram for individualized OS estimation. Prediction performance was assessed with the concordance index (C-index) and the Kaplan-Meier (KM) estimator. Results: The DL-based radiomics signatures based on two phases were significantly correlated with OS in the training (C-index: 0.79-0.92; P<0.01), internal validation (C-index: 0.61-0.86; P<0.01), and external validation (C-index: 0.56-0.75; P<0.01) cohorts. The combined model integrating radiomics signatures with clinical factors showed a significant improvement in predictive performance compared to the clinical model in the training (C-index: 0.86 vs. 0.80; P<0.01), internal validation (C-index: 0.77 vs. 0.71; P<0.01), and external validation (C-index: 0.71 vs. 0.66; P<0.01) cohorts. Moreover, the combined model classified patients into high-risk and low-risk groups, and the high-risk group had a shorter OS compared to the low-risk group in the training cohort [hazard ratio (HR) 3.12, 95% confidence interval (CI): 2.34-3.93; P<0.01], which was validated in the internal (HR 2.51, 95% CI: 1.57-3.99; P<0.01) and external validation cohort (HR 1.77, 95% CI: 1.21-2.59; P<0.01).Conclusions: DL radiomics analysis could serve as a potential and noninvasive tool for prognostic prediction and risk stratification in patients with gNENs.
引用
收藏
页码:8190 / +
页数:17
相关论文
共 50 条
  • [21] Deep Learning-Based Image Conversion Improves the Reproducibility of Computed Tomography Radiomics Features A Phantom Study
    Lee, Seul Bi
    Cho, Yeon Jin
    Hong, Youngtaek
    Jeong, Dawun
    Lee, Jina
    Kim, Soo-Hyun
    Lee, Seunghyun
    Choi, Young Hun
    INVESTIGATIVE RADIOLOGY, 2022, 57 (05) : 308 - 317
  • [22] Radiomics-Based Deep Learning Prediction of Overall Survival in Non-Small-Cell Lung Cancer Using Contrast-Enhanced Computed Tomography
    Hou, Kuei-Yuan
    Chen, Jyun-Ru
    Wang, Yung-Chen
    Chiu, Ming-Huang
    Lin, Sen-Ping
    Mo, Yuan-Heng
    Peng, Shih-Chieh
    Lu, Chia-Feng
    CANCERS, 2022, 14 (15)
  • [23] Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: A pilot study
    Li, Zhenhui
    Zhang, Dafu
    Dai, Youguo
    Dong, Jian
    Wu, Lin
    Li, Yajun
    Cheng, Zixuan
    Ding, Yingying
    Liu, Zaiyi
    CHINESE JOURNAL OF CANCER RESEARCH, 2018, 30 (04) : 406 - +
  • [24] Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: A pilot study
    Zhenhui Li
    Dafu Zhang
    Youguo Dai
    Jian Dong
    Lin Wu
    Yajun Li
    Zixuan Cheng
    Yingying Ding
    Zaiyi Liu
    ChineseJournalofCancerResearch, 2018, 30 (04) : 406 - 414
  • [25] Computed Tomography-based Radiomics Nomogram for the Preoperative Prediction of Tumor Deposits and Clinical Outcomes in Colon Cancer: a Multicenter Study
    Li, Manman
    Xu, Guodong
    Chen, Qiaoling
    Xue, Ting
    Peng, Hui
    Wang, Yuwei
    Shi, Hui
    Duan, Shaofeng
    Feng, Feng
    ACADEMIC RADIOLOGY, 2023, 30 (08) : 1572 - 1583
  • [26] CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study
    Song, Hongzheng
    Yang, Shifeng
    Yu, Boyang
    Li, Na
    Huang, Yonghua
    Sun, Rui
    Wang, Bo
    Nie, Pei
    Hou, Feng
    Huang, Chencui
    Zhang, Meng
    Wang, Hexiang
    CANCER IMAGING, 2023, 23 (01)
  • [27] CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study
    Hongzheng Song
    Shifeng Yang
    Boyang Yu
    Na Li
    Yonghua Huang
    Rui Sun
    Bo Wang
    Pei Nie
    Feng Hou
    Chencui Huang
    Meng Zhang
    Hexiang Wang
    Cancer Imaging, 23
  • [28] Deep learning-based segmentation of gallbladder cancer on abdominal computed tomography scans: a multicenter study
    Gupta, Pankaj
    Dutta, Niharika
    Tomar, Ajay
    Singh, Shravya
    Choudhary, Sonam
    Mehta, Nandita
    Mehta, Vansha
    Sheth, Rishabh
    Srivastava, Divyashree
    Thanihai, Salai
    Singla, Palki
    Prakash, Gaurav
    Yadav, Thakur
    Kaman, Lileswar
    Irrinki, Santosh
    Singh, Harjeet
    Shah, Niket
    Choudhari, Amit
    Patkar, Shraddha
    Goel, Mahesh
    Yadav, Rajnikant
    Gupta, Archana
    Kumar, Ishan
    Seth, Kajal
    Dutta, Usha
    Arora, Chetan
    ABDOMINAL RADIOLOGY, 2025,
  • [29] A clinical–radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning: a multicenter study
    Huanhuan Ren
    Haojie Song
    Jingjie Wang
    Hua Xiong
    Bangyuan Long
    Meilin Gong
    Jiayang Liu
    Zhanping He
    Li Liu
    Xili Jiang
    Lifeng Li
    Hanjian Li
    Shaoguo Cui
    Yongmei Li
    Insights into Imaging, 14
  • [30] Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma
    Schoen, Felix
    Kieslich, Aaron
    Nebelung, Heiner
    Riediger, Carina
    Hoffmann, Ralf-Thorsten
    Zwanenburg, Alex
    Loeck, Steffen
    Kuehn, Jens-Peter
    SCIENTIFIC REPORTS, 2024, 14 (01)