On-line current control for continuous conversion of CO2 to CH4 in a microbial electrosynthesis cell

被引:4
|
作者
Tanguay-Rioux, Fabrice [1 ]
Nwanebu, Emmanuel [1 ]
Thadani, Manish [2 ]
Tartakovsky, Boris [1 ]
机构
[1] Natl Res Council Canada, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
[2] Natl Res Council Canada, 2620 Speakman Dr, Mississauga, ON L5K, Canada
关键词
Microbial Electrosynthesis; Feedback control; CO; 2; conversion; Biogas upgrade; HYDROGEN-PRODUCTION; ELECTROLYSIS CELL; FUEL-CELL; CARBON-DIOXIDE; OPTIMIZATION; ACETATE; METHANE;
D O I
10.1016/j.bej.2023.108965
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study demonstrates the continuous conversion of carbon dioxide (CO2) to methane (CH4) in a microbial electrosynthesis (MES) cell with on-line CO2 concentration measurements in the cathode off-gas and feedback control of the current. First, a dynamic non-linear model describing CO2 conversion to acetate and CH4 was used to evaluate the impact of MES cell current on electricity consumption and cathode off-gas composition, and to select proportional-integral-derivative (PID) controller parameters. Next, on-line current control based on CO2 measurements was demonstrated in laboratory-scale 0.5 L and 1 L (cathode volume) MES cells fed with pure CO2 or synthetic biogas (40% CO2 and 60% CH4). In all tests, feedback control resulted in stable long-term CH4 production at a volumetric rate of 0.8-1.4 L (LR d)-1, near-constant CO2 content in the cathode off-gas, and Coulombic efficiency of 65-80%. Acetate (500 - 1000 mg L-1) was observed in cathodic liquid in all tests, suggesting relatively low activity of acetoclastic methanogens in the cathodic biofilm. The model and the pro-posed approach for current control can be also applied for MES of products other than CH4, such as carboxylic acids.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Enhanced CO2 Conversion to Acetate through Microbial Electrosynthesis (MES) by Continuous Headspace Gas Recirculation
    Mateos, Raul
    Sotres, Ana
    Alonso, Raul M.
    Moran, Antonio
    Escapa, Adrian
    ENERGIES, 2019, 12 (17)
  • [42] Advances in microbial electrosynthesis for CO2 capture and efficient catalytic conversion
    Wang, Li
    Zhang, Aixin
    Zhang, Jiafang
    Hu, Ning
    Bai, Yuhe
    Lu, Shuai
    Jingxi Huagong/Fine Chemicals, 2022, 39 (08): : 1537 - 1545
  • [43] Phase field modeling of CH4 hydrate conversion into CO2 hydrate in the presence of liquid CO2
    Tegze, G.
    Granasy, L.
    Kvamme, B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (24) : 3104 - 3111
  • [44] CO2/CH4 Separation by Adsorption
    不详
    ENERGY TECHNOLOGY, 2013, 1 (08) : 434 - 434
  • [45] A photocatalyst for reducing CO2 to CH4
    Chemical Engineering (United States), 2018, 125 (01):
  • [46] CO2/CH4 feed for DME
    不详
    EUROPEAN CHEMICAL NEWS, 1996, 65 (1718): : 22 - 22
  • [47] Photodriven reduction of CO2 to CH4
    Fang, Baizeng
    Xing, Yalan
    Bonakdarpour, Arman
    Zhang, Shichao
    Wilkinson, David P.
    ACS Sustainable Chemistry and Engineering, 2015, 3 (10): : 2381 - 2388
  • [48] On the use of satellite-derived CH4 : CO2 columns in a joint inversion of CH4 and CO2 fluxes
    Pandey, S.
    Houweling, S.
    Krol, M.
    Aben, I.
    Rockmann, T.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (15) : 8615 - 8629
  • [49] Current status and development of membranes for CO2/CH4 separation: A review
    Zhang, Yuan
    Sunarso, Jaka
    Liu, Shaomin
    Wang, Rong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 12 : 84 - 107
  • [50] Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs
    Rada, Zana Hassan
    Abid, Hussein Rasool
    Shang, Jin
    He, Yingdian
    Webley, Paul
    Liu, Shaomin
    Sun, Hongqi
    Wang, Shaobin
    FUEL, 2015, 160 : 318 - 327