COMPARISON OF SOME DYNAMICAL SYSTEMS ON THE QUOTIENT SPACE OF THE SIERPINSKI TETRAHEDRON

被引:1
|
作者
Aslan, Nisa [1 ]
Saltan, Mustafa [1 ]
Demir, Bunyamin [1 ]
机构
[1] Eskisehir Tech Univ, Dept Math, Eskisehir, Turkiye
关键词
Sierpinski tetrahedron; quotient space; code representation; dynamical systems; topological conjugacy; FORMULA; SET;
D O I
10.31801/cfsuasmas.1126635
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of {0, 1, 2, 3}N by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 50 条
  • [31] ON SOME HOLOMORPHIC DYNAMICAL-SYSTEMS
    CHOJNACKI, W
    QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (154): : 159 - 172
  • [32] Comparison between Attractors in Skew Product Dynamical Systems with Attractors in Dynamical Systems
    Roslan, Ummu Atiqah Mohd
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [33] Dynamical systems approach to space environment turbulence
    Chian, ACL
    Borotto, FA
    Rempel, EL
    Macau, EEN
    Rosa, RR
    Christiansen, F
    SPACE SCIENCE REVIEWS, 2003, 107 (1-2) : 447 - 461
  • [34] The Interrelation of Motions of Dynamical Systems in a Metric Space
    A. P. Afanas’ev
    S. M. Dzyuba
    Lobachevskii Journal of Mathematics, 2022, 43 : 3414 - 3419
  • [35] The reduction of discrete dynamical systems in metric space
    Reinfelds, A
    ADVANCES IN DIFFERENCE EQUATIONS-BOOK, 1997, : 525 - 536
  • [36] Phase space error control for dynamical systems
    Higham, DJ
    Humphries, AR
    Wain, RJ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2275 - 2294
  • [37] Hilbert space approaches to nonlinear dynamical systems
    Kowalski, K
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 855 - 859
  • [38] Subvolumes in dynamical systems and the tracking of space debris
    Maruskin, J. M.
    Scheeres, D. J.
    Bloch, A. M.
    ASTRODYNAMICS 2007, PTS I-III, 2008, 129 : 2223 - +
  • [39] Sensitivity of dynamical systems to Banach space parameters
    Banks, H. T.
    Nguyen, Hoan K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 146 - 161
  • [40] SEPARABLE DYNAMICAL SYSTEMS OF STAECKEL IN FLAT SPACE
    IWATA, G
    PROGRESS OF THEORETICAL PHYSICS, 1958, 19 (04): : 369 - 374