A novel botnet attack detection for IoT networks based on communication graphs

被引:0
|
作者
Munoz, David Concejal [1 ]
Valiente, Antonio del-Corte [2 ]
机构
[1] Inetum Espana SA, C Maria Portugal, 9-11, Bldg 1, Madrid 28050, Spain
[2] Univ Alcala, Polytech Sch, Dept Comp Engn, Barcelona Rd Km 33-6, Madrid 28871, Spain
关键词
Autoencoders; Communication graphs; Cyberattacks; Internet of Things; INTRUSION DETECTION SYSTEM; SECURITY; INTERNET;
D O I
10.1186/s42400-023-00169-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intrusion detection systems have been proposed for the detection of botnet attacks. Various types of centralized or distributed cloud-based machine learning and deep learning models have been suggested. However, the emergence of the Internet of Things (IoT) has brought about a huge increase in connected devices, necessitating a different approach. In this paper, we propose to perform detection on IoT-edge devices. The suggested architecture includes an anomaly intrusion detection system in the application layer of IoT-edge devices, arranged in software-defined networks. IoT-edge devices request information from the software-defined networks controller about their own behaviour in the network. This behaviour is represented by communication graphs and is novel for IoT networks. This representation better characterizes the behaviour of the device than the traditional analysis of network traffic, with a lower volume of information. Botnet attack scenarios are simulated with the IoT-23 dataset. Experimental results show that attacks are detected with high accuracy using a deep learning model with low device memory requirements and significant storage reduction for training.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] VAE-Based Latent Representations Learning for Botnet Detection in IoT Networks
    Ramzi Snoussi
    Habib Youssef
    Journal of Network and Systems Management, 2023, 31
  • [22] Systematic Literature Review on IoT-Based Botnet Attack
    Ali, Ihsan
    Ahmed, Abdelmuttlib Ibrahim Abdalla
    Almogren, Ahmad
    Raza, Muhammad Ahsan
    Shah, Syed Attique
    Khan, Anwar
    Gani, Abdullah
    IEEE ACCESS, 2020, 8 : 212220 - 212232
  • [23] Detection of IoT Botnet Based on Deep Learning
    Liu, Junyi
    Liu, Shiyue
    Zhang, Sihua
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8381 - 8385
  • [24] Motif-Based Attack Detection in Network Communication Graphs
    Juszczyszyn, Krzysztof
    Kolaczek, Grzegorz
    COMMUNICATIONS AND MULTIMEDIA SECURITY, 2011, 7025 : 206 - 213
  • [25] Impersonation Attack Detection in IoT Networks
    Dinh Duc Nha Nguyen
    Sood, Keshav
    Xiang, Yong
    Gao, Longxiang
    Chi, Lianhua
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 6061 - 6066
  • [26] Hybrid Machine Learning Model for Efficient Botnet Attack Detection in IoT Environment
    Ali, Mudasir
    Shahroz, Mobeen
    Mushtaq, Muhammad Faheem
    Alfarhood, Sultan
    Safran, Mejdl
    Ashraf, Imran
    IEEE ACCESS, 2024, 12 : 40682 - 40699
  • [27] Hybrid Feature Selection Models for Machine Learning Based Botnet Detection in IoT Networks
    Guerra-Manzanares, Alejandro
    Nomm, Sven
    Bahsi, Hayretdin
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 324 - 327
  • [28] Enhancing IoT Botnet Attack Detection in SOCs with an Explainable Active Learning Framework
    Kalakoti, Rajesh
    Nomm, Sven
    Bahsi, Hayretdin
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0265 - 0272
  • [29] A novel approach of botnet detection using hybrid deep learning for enhancing security in IoT networks
    Ali, Shamshair
    Ghazal, Rubina
    Qadeer, Nauman
    Saidani, Oumaima
    Alhayan, Fatimah
    Masood, Anum
    Saleem, Rabia
    Khan, Muhammad Attique
    Gupta, Deepak
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 103 : 88 - 97
  • [30] IoT Botnet Detection Based on the Behaviors of DNS Queries
    Fan, Chun-I
    Shie, Cheng-Han
    Hsu, Che-Ming
    Ban, Tao
    Morikawa, Tomohiro
    Takahashi, Takeshi
    2022 5TH IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (IEEE DSC 2022), 2022,