Liquid phase methanol synthesis by CO2 hydrogenation over Cu-Zn/Z catalysts: Influence of Cd promotion

被引:2
|
作者
Alotaibi, Mshari A. [1 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities, Dept Chem, POB 173, Al Kharj 11942, Saudi Arabia
关键词
Cadmium promoter; Carbon dioxide conversion; Liquid phase; Methanol fuel; Green chemistry; CARBON-DIOXIDE; MORDENITE; PERFORMANCE; DISPERSION; ZEOLITE;
D O I
10.1016/j.jtice.2023.105210
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Background: The current scenario of high CO2 emissions, which is causing global warming and climate change, one of the greatest challenges faced by the global community. One of the most promising ways to recycle CO2 and thus mitigate its emission into the natural environment is the catalytic conversion of CO2 into valuable products such as methanol, hydrocarbons, dimethyl ether (DME), formaldehyde, syngas, alcohols and urea. Method: Zeolite supported Cu-Zn bimetallic (Cu-Zn/Z) catalysts were synthesized by co-precipitation method. The synthesized catalysts were doped with different concentration of Cd to investigate the promoting role of Cd. To investigate the physicochemical profile of the calcined Cu-Zn/Z nano-catalysts, various analytical techniques were used. Significant findings: Thermal stability of zeolite support was carried out using Thermogravimetric analysis (TGA). TGA data exhibited higher thermal stability of the zeolite support. XRD findings revealed highly dispersed Cd promoted Cu-Zn oxides on the surface of the zeolite support. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate morphology, which indicated the nano size of synthesized catalysts with uniform distribution of metal oxides. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) detected bulk composition of each metal. BET surface studies revealed the mesoporous nature of Cd promoted Cu-Zn/Z catalysts. X-ray Photoelectron Spectroscopy (XPS) revealed the surface chemistry of Cd promoted Cu-Zn/Z catalysts. Activity data showed the active profile of Cd promoted Cu-Zn/Z catalysts for CO2 hydrogenation to methanol by accelerating the methanol synthesis rate from 73 to 157 g.meth/kg.cat.h. Structure-activity studies identified metal-support interactions and Cu stability as the main factors governing the three-phase methanol synthesis rate from CO2 hydrogenation. The importance of Cd promotion was further demonstrated by the fact that activity profile revealed better performance of the current catalysts with recently reported data in the literature.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Influence of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation to methanol
    Gao, Peng
    Li, Feng
    Zhang, Lina
    Zhao, Ning
    Xiao, Fukui
    Wei, Wei
    Zhong, Liangshu
    Sun, Yuhan
    JOURNAL OF CO2 UTILIZATION, 2013, 2 : 16 - 23
  • [22] Structural contributions of Zn in enhancing CO2 hydrogenation to methanol over ZnxZrOy catalysts
    Zanganeh, Zinat
    Bols, Max
    Yazdani, Parviz
    Poelman, Hilde
    Saeys, Mark
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (02) : 563 - 579
  • [23] Inverse ZnO/Cu catalysts for methanol synthesis from CO2 hydrogenation
    Guihui Wang
    Fei Luo
    Lili Lin
    Fuzhen Zhao
    Reaction Kinetics, Mechanisms and Catalysis, 2021, 132 : 155 - 170
  • [24] Inverse ZnO/Cu catalysts for methanol synthesis from CO2 hydrogenation
    Wang, Guihui
    Luo, Fei
    Lin, Lili
    Zhao, Fuzhen
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 132 (01) : 155 - 170
  • [25] THE ROLE OF CO2 IN METHANOL SYNTHESIS ON CU-ZN OXIDE - AN ISOTOPE LABELING STUDY
    LIU, G
    WILLCOX, D
    GARLAND, M
    KUNG, HH
    JOURNAL OF CATALYSIS, 1985, 96 (01) : 251 - 260
  • [26] CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets
    Deerattrakul, Varisara
    Dittanet, Peerapan
    Sawangphruk, Montree
    Kongkachuichay, Paisan
    JOURNAL OF CO2 UTILIZATION, 2016, 16 : 104 - 113
  • [27] DUAL PROMOTION OF Cu/ZnO CATALYSTS MODIFIED BY ACETYLACETONE PRECURSORS FOR CO2 HYDROGENATION TO METHANOL
    Xian, Junjie
    Xu, Yuntian
    Qu, Gaocheng
    Na, Wei
    Wang, Hua
    Gao, Wengui
    QUIMICA NOVA, 2024, 47 (02):
  • [28] Machine Learning Assisted for Preparation of Graphene Supported Cu-Zn Catalyst for CO2 Hydrogenation to Methanol
    Pisitpipathsin, Nuttapon
    Deshsorn, Krittapong
    Deerattrakul, Varisara
    Iamprasertkun, Pawin
    CHEMISTRY-AN ASIAN JOURNAL, 2025,
  • [29] Methanol synthesis from CO2 hydrogenation over copper based catalysts
    Ahouari, Hania
    Soualah, Ahcene
    Le Valant, Anthony
    Pinard, Ludovic
    Magnoux, Patrick
    Pouilloux, Yannick
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2013, 110 (01) : 131 - 145
  • [30] Methanol synthesis from CO2 hydrogenation over copper based catalysts
    Hania Ahouari
    Ahcène Soualah
    Anthony Le Valant
    Ludovic Pinard
    Patrick Magnoux
    Yannick Pouilloux
    Reaction Kinetics, Mechanisms and Catalysis, 2013, 110 : 131 - 145