Interpolation estimates of the measure of noncompactness for multilinear mappings

被引:0
|
作者
Mastylo, Mieczyslaw [1 ]
Silva, Eduardo B. [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
[2] Univ Estadual Maringa UEM, Dept Matemat, Av Colombo 5790, BR-870300110 Maringa, PR, Brazil
关键词
COMPACT BILINEAR OPERATORS; REAL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study interpolation of the measure of noncompactness for multilinear mappings. It is proved that, for a large class of interpolation functors preserving interpolation of measure of noncompactness of interpolated linear operators between Banach couples, the results can be lifted to multilinear mappings. An application is given, where it is shown that the measure of noncompactness of multilinear mappings behaves well under the real method of interpolation. We also prove one-sided interpolation estimates of the measure of noncompactness of multilinear mappings. These results are used to prove a general multilinear variant of the linear result, obtained by Edmunds and Teixeira for the real method, under the hypothesis that the couple in the target of the operator satisfies an ap-proximation property. A by-product is obtained, where we get logarithmically convex estimates of the measure of noncompactness of multilinear mappings be-tween complex interpolation spaces, up to a multiplicative constant.
引用
收藏
页码:793 / 819
页数:27
相关论文
共 50 条
  • [41] On almost summing polynomials and multilinear mappings
    Pellegrino, Daniel
    Ribeiro, Joilson
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (04): : 397 - 413
  • [42] PSEUDO-TOPOLOGIZERS AND MULTILINEAR MAPPINGS
    AWERBUCH, WI
    MATHEMATISCHE NACHRICHTEN, 1983, 114 : 343 - 368
  • [44] AUTOMORPHISM-GROUPS OF MULTILINEAR MAPPINGS
    EGAWA, Y
    SUZUKI, H
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1985, 37 (01) : 135 - 155
  • [45] ON CERTAIN UNIFORMLY OPEN MULTILINEAR MAPPINGS
    Balcerzak, Marek
    Behrends, Ehrhard
    Strobin, Filip
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (03): : 482 - 494
  • [46] On continuous restrictions of measurable multilinear mappings
    E. V. Yurova
    Mathematical Notes, 2015, 98 : 977 - 981
  • [47] Holomorphy types and ideals of multilinear mappings
    Botelho, G.
    Braunss, H.-A.
    Junek, H.
    Pellegrino, D.
    STUDIA MATHEMATICA, 2006, 177 (01) : 43 - 65
  • [48] Fuzzy neurons and fuzzy multilinear mappings
    Abdukhailikov, K
    Kim, C
    Cho, HS
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 543 - 547
  • [49] Polynomials and multilinear mappings in topological modules
    Concordido C.F.R.
    Pombo Jr. D.P.
    Rendiconti del Circolo Matematico di Palermo, 2002, 51 (2) : 213 - 236
  • [50] SOME INEQUALITIES FOR POSITIVE MULTILINEAR MAPPINGS
    Gumus, Ibrahim Halil
    Akic, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 907 - 912