Reflective Phase-Contrast for High-Contrast Imaging of van der Waals Heterostructure

被引:2
|
作者
Kim, Ha-Leem [1 ,2 ]
Wang, Feng [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
Phase-contrast microscopy; van der Waals heterostructures; spatial light modulators; ring illumination; FRACTIONAL CHERN INSULATORS; WIGNER CRYSTAL; FERROMAGNETISM; STATES;
D O I
10.1021/acs.nanolett.3c00252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical microscopy plays a critical role in the fabrication of two-dimensional (2D) van der Waals heterostructures. An outstanding challenge in conventional microscopy is to visualize transparent 2D layers as well as embedded monolayers in a stacked heterostructure with high optical contrast. Phase-contrast microscopy, first developed by Frits Zernike in the 1930s, leverages the interference effect between specimen scattered light and background light to increase the contrast of transparent specimens. Such phase-contrast microscopy, always in a transmission configuration, revolutionized the study of transparent cellular structures in biology. Here, we develop a versatile reflective phase-contrast microscopy for imaging 2D heterostructures. We employ two spatial light modulators to flexibly control the intensity and phase of the illumination and the reflected light. This reflective phase-contrast microscopy achieves unprecedented high contrast for imaging a transparent 2D monolayer. It also enables direct observation of 2D monolayers embedded inside a thick heterostructure that are "invisible" in conventional microscopy.
引用
收藏
页码:2898 / 2904
页数:7
相关论文
共 50 条
  • [31] Digital holography for quantitative phase-contrast imaging
    Cuche, E
    Bevilacqua, F
    Depeursinge, C
    OPTICS LETTERS, 1999, 24 (05) : 291 - 293
  • [32] Phase-contrast microscope with molecular contrast
    Toda, Keiichiro
    Tamamitsu, Miu
    Horisaki, Ryoichi
    Ideguchi, Takuro
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [33] Phase-contrast volume holographic imaging system
    Luo, Yuan
    de Leon, Erich
    Castro, Jose
    Lee, Justin
    Barton, Jennifer K.
    Kostuk, Raymond K.
    Barbastathis, George
    OPTICS LETTERS, 2011, 36 (07) : 1290 - 1292
  • [34] Phase-contrast imaging for body composition measurement
    Han, Huajie
    Hu, Renfang
    Wali, Faiz
    Wu, Zhao
    Gao, Kun
    Wang, Shenghao
    Gu, Yonggang
    Jin, Yi
    Zhai, Chao
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 43 : 25 - 33
  • [35] Undersampled phase-contrast imaging of the carotid arteries
    Liyong Chen
    Seong-Eun Kim
    Dennis Parker
    Edward VR DiBella
    Journal of Cardiovascular Magnetic Resonance, 12 (Suppl 1)
  • [36] SCATTERING AND PHASE-CONTRAST IN ELECTRON SPECTROSCOPIC IMAGING
    REIMER, L
    ROSSMESSEMER, M
    EUREM 88, VOLS 1-3: TUTORIALS, INSTRUMENTATION AND TECHNIQUES / PHYSICS AND MATERIALS / BIOLOGY, 1988, 93 : 181 - 182
  • [37] MR phase-contrast imaging in pulmonary hypertension
    Reiter, Ursula
    Reiter, Gert
    Fuchsjaeger, Michael
    BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1063):
  • [38] Phase-contrast optical coherence imaging of tissue
    Jeong, K
    Turek, JJ
    Nolte, DD
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE IX, 2005, 5690 : 412 - 421
  • [39] X-ray phase-contrast imaging
    Endrizzi, Marco
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 878 : 88 - 98
  • [40] ULTRASONIC-IMAGING EXPLOITS PHASE-CONTRAST
    MEZRICH, R
    VILKOMERSON, D
    ETZOLD, K
    IEEE SPECTRUM, 1975, 12 (12) : 35 - 39