From picture to 3D hologram: end-to-end learning of real-time 3D photorealistic hologram generation from 2D image input

被引:11
|
作者
Chang, Chenliang [1 ,2 ,3 ]
Dai, Bo [1 ,2 ]
Zhu, Dongchen
LI, Jiamao [3 ]
Xia, Jun [4 ]
Zhang, Dawei [1 ,2 ]
Hou, Lianping [5 ]
Zhuang, Songlin [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Engn Res Ctr Opt Instrument & Syst, Sch Opt Elect & Comp Engn, Minist Educ, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Shanghai Key Lab Modern Opt Syst, Shanghai 200093, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Bion Vis Syst Lab, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
[4] Southeast Univ, Sch Elect Sci & Engn, Joint Int Res Lab Informat Display & Visualizat, Nanjing 210096, Peoples R China
[5] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
基金
中国国家自然科学基金;
关键词
DISPLAY;
D O I
10.1364/OL.478976
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Letter, we demonstrate a deep-learning-based method capable of synthesizing a photorealistic 3D hologram in real-time directly from the input of a single 2D image. We design a fully automatic pipeline to create large-scale datasets by converting any collection of real-life images into pairs of 2D images and corresponding 3D holograms and train our convolutional neural network (CNN) end-to-end in a supervised way. Our method is extremely computation -efficient and memory-efficient for 3D hologram generation merely from the knowledge of on-hand 2D image content. We experimentally demonstrate speckle-free and photoreal-istic holographic 3D displays from a variety of scene images, opening up a way of creating real-time 3D holography from everyday pictures. (c) 2023 Optical Society of America (c) 2023 Optica Publishing Group
引用
收藏
页码:851 / 854
页数:4
相关论文
共 50 条
  • [41] Dense 3D face alignment from 2D video for real-time use
    Jeni, Laszlo A.
    Cohn, Jeffrey F.
    Kanade, Takeo
    IMAGE AND VISION COMPUTING, 2017, 58 : 13 - 24
  • [42] Real-time 2D Video/3D LiDAR Registration
    Bodensteiner, C.
    Arens, M.
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 2206 - 2209
  • [43] Extraction of 3D trajectories of mandibular condyles from 2D real-time MRI
    Isaieva, Karyna
    Leclere, Justine
    Paillart, Guillaume
    Drouot, Guillaume
    Felblinger, Jacques
    Dubernard, Xavier
    Vuissoz, Pierre-Andre
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2025, 38 (01): : 131 - 140
  • [44] KeypointDETR: An End-to-End 3D Keypoint Detector
    Jin, Hairong
    Shen, Yuefan
    Lou, Jianwen
    Zhou, Kun
    Zheng, Youyi
    COMPUTER VISION - ECCV 2024, PT LXXIV, 2025, 15132 : 374 - 390
  • [45] Deep End-to-end 3D Person Detection from Camera and Lidar
    Roth, Markus
    Jargot, Dominik
    Gavrila, Dariu M.
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 521 - 527
  • [46] An end-to-end workflow for nondestructive 3D pathology
    Bishop, Kevin W.
    Erion Barner, Lindsey A.
    Han, Qinghua
    Baraznenok, Elena
    Lan, Lydia
    Poudel, Chetan
    Gao, Gan
    Serafin, Robert B.
    Chow, Sarah S. L.
    Glaser, Adam K.
    Janowczyk, Andrew
    Brenes, David
    Huang, Hongyi
    Miyasato, Dominie
    True, Lawrence D.
    Kang, Soyoung
    Vaughan, Joshua C.
    Liu, Jonathan T. C.
    NATURE PROTOCOLS, 2024, 19 (04) : 1122 - 1148
  • [47] End-to-end 3D Tracking with Decoupled Queries
    Li, Yanwei
    Yu, Zhiding
    Philion, Jonah
    Anandkumar, Anima
    Fidler, Sanja
    Jia, Jiaya
    Alvarez, Jose
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18256 - 18265
  • [48] 3D Dosimetry in End-To-End Dosimetry QA
    Ibbott, G.
    MEDICAL PHYSICS, 2016, 43 (06) : 3695 - 3695
  • [49] An end-to-end workflow for nondestructive 3D pathology
    Kevin W. Bishop
    Lindsey A. Erion Barner
    Qinghua Han
    Elena Baraznenok
    Lydia Lan
    Chetan Poudel
    Gan Gao
    Robert B. Serafin
    Sarah S. L. Chow
    Adam K. Glaser
    Andrew Janowczyk
    David Brenes
    Hongyi Huang
    Dominie Miyasato
    Lawrence D. True
    Soyoung Kang
    Joshua C. Vaughan
    Jonathan T. C. Liu
    Nature Protocols, 2024, 19 : 1122 - 1148
  • [50] 3D-LaneNet: End-to-End 3D Multiple Lane Detection
    Garnett, Noa
    Cohen, Rafi
    Pe'er, Tomer
    Lahav, Roee
    Levi, Dan
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2921 - 2930