Thermal expansion and microstructure evolution of atmospheric plasma sprayed NiCrAlY bond coat using in-situ high temperature X-ray diffraction

被引:7
|
作者
Vijay, V. Abhijith [1 ]
Santhy, K. [2 ]
Sivakumar, G. [3 ]
Rajasekaran, B. [1 ]
机构
[1] Natl Inst Technol Karnataka NITK, Dept Met & Mat Engn, Surathkal 575025, India
[2] Indus Univ, Inst Technol & Engn, Dept Mat & Met Engn, Ahmadabad 382115, India
[3] Int Adv Res Ctr Powder Metallurgy&New Mat, Hyderabad 500005, India
来源
关键词
Atmospheric plasma spray; NiCrAlY; In-situ high temperature XRD; Lattice strain; Thermal expansion; Thermo-Calc; OXIDATION BEHAVIOR; TRANSFORMATION BEHAVIOR; AL SYSTEM; STEEL; COEFFICIENT; INTERFACE; ALLOYS; LAYER; OXIDE; XRD;
D O I
10.1016/j.surfcoat.2022.129132
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The paper focuses on in-situ high-temperature X-ray diffraction (HT-XRD) study on atmospheric plasma sprayed NiCrAlY coating. The sample was in-situ heated from 25 degrees C to 1150 degrees C in a controlled atmosphere (3 x 10-4 bar), and the corresponding X-ray diffraction patterns for different temperatures were recorded. The effect of tem-perature on crystallite size, lattice strain, and coefficient of linear thermal expansion was studied. Major phases identified are gamma-Ni, gamma'-Ni3Al, beta-NiAl, and alpha-Cr. The formation of stable alpha-Al2O3 and spinel was found above 1000 degrees C. The transformation of beta to gamma' and gamma phase was observed as a function of temperature. The equilibrium phases and the thermal expansion of disordered Face Centered Cubic (FCC) and Body Centered Cubic (BCC) phases were predicted and supported by Thermo-Calc prediction for the stable temperature range. Results showed that the non-equilibrium microstructure produced by thermal spray process did not alter the thermal expansion behaviour. In-situ treatment resulted in microstructure and elemental homogenization. The thermal expansion and mechanism of phase evolution were discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Thermal expansion and high temperature structure evolution of zoisite by single-crystal X-ray and neutron diffraction
    Fernando Cámara
    G. Diego Gatta
    Martin Meven
    Daria Pasqual
    Physics and Chemistry of Minerals, 2012, 39 : 27 - 45
  • [32] Anisotropic Thermal Expansion of Barium Hexaferrite Using Dynamic High-temperature X-ray Diffraction
    D. Sriram
    R. L. Snyder
    V. R. W. Amarakoon
    Journal of Materials Research, 2000, 15 : 1349 - 1353
  • [33] Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction
    Akikubo, Kazuma
    Kurahashi, Tyler
    Kawaguchi, Sota
    Tachibana, Masaru
    CARBON, 2020, 169 : 307 - 311
  • [34] Anisotropic thermal expansion of barium hexaferrite using dynamic high-temperature x-ray diffraction
    Sriram, D
    Snyder, RL
    Amarakoon, VRW
    JOURNAL OF MATERIALS RESEARCH, 2000, 15 (06) : 1349 - 1353
  • [35] Thermal expansion measurements under high pressure using X-ray diffraction
    Wang, Y.
    Uchida, T.
    THERMAL CONDUCTIVITY 27: THERMAL EXPANSION 15, 2005, 27 : 538 - 553
  • [36] In-situ high temperature X-ray diffraction study of Ni/SiC interface reactions
    T. Fujimura
    S.-I. Tanaka
    Journal of Materials Science, 1999, 34 : 235 - 239
  • [37] In-situ High Temperature X-ray Diffraction Study of the Am-O System
    E. Epifano
    R. C. Belin
    J C Richaud
    R. Vauchy
    M. Strach
    F. Lebreton
    T. Delahaye
    C. Guéneau
    P. M. Martin
    MRS Advances, 2016, 1 (62) : 4133 - 4137
  • [38] In-situ high temperature X-ray diffraction study of Ni/SiC interface reactions
    Fujimura, T
    Tanaka, SI
    JOURNAL OF MATERIALS SCIENCE, 1999, 34 (02) : 235 - 239
  • [39] In-situ high temperature X-ray diffraction study of Co/SiC interface reactions
    Fujimura, T
    Tanaka, SI
    JOURNAL OF MATERIALS SCIENCE, 1999, 34 (23) : 5743 - 5747
  • [40] In-situ high temperature X-ray diffraction study on phase changes during galvannealing
    Gomi, S
    Kato, C
    Fujimura, T
    Mochizuki, K
    ZINC-BASED STEEL COATING SYSTEMS: PRODUCTION AND PERFORMANCE, 1998, : 147 - 156