A secure and flexible edge computing scheme for AI-driven industrial IoT

被引:13
|
作者
Zhao, Yan
Hu, Ning
Zhao, Yue
Zhu, Zhihan
机构
[1] Guangzhou, China
[2] Chengdu, China
基金
中国国家自然科学基金;
关键词
Industrial IoT; Edge computing security; Application scheduling; Genetic algorithm; MULTIOBJECTIVE OPTIMIZATION; ARTIFICIAL-INTELLIGENCE; COMPUTATION; ARCHITECTURE; ALGORITHMS; INTERNET;
D O I
10.1007/s10586-021-03400-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
AI-driven edge computing is a development trend of the Industrial Internet of Things (IIoT). However, most existing solutions ignore the limitations of flexibility, security, and real-time performance caused by the rigid architecture of industrial control systems and the "end-to-end" computing paradigm of IIoT. This paper proposes an edge computing scheme for AI-driven IIoT. Specifically, we design a novel software-defined industry control architecture to enhance the flexibility and security of IIoT edge systems. The architecture decouples the software and hardware of Industrial devices by virtualization and industrial modeling technologies, which improves the flexibility and programmability of IIoT edge systems and alleviates the privacy issue of industrial data. Moreover, we adopt a new edge computing method, dispersed computing, to AI-driven IIoT to achieves better real-time performance and resource utilization. The proposed computing method optimizes the computing and networking of AI-driven industrial applications jointly by a multiobjective optimization scheduling algorithm. We also evaluated the performance of our scheme through experiments.
引用
收藏
页码:283 / 301
页数:19
相关论文
共 50 条
  • [21] EMPYREAN: Trustworthy, Cognitive and AI-driven Collaborative Associations of IoT Devices and Edge Resources for Data Processing
    Kretsis, A.
    Kokkinos, P.
    Varvarigos, E.
    Syrivelis, D.
    Bakopoulos, P.
    Sipos, M.
    Feher, M.
    Lucani, D. E.
    Bernabe, J. M.
    Skarmeta, A.
    Paez, I.
    Cominardi, L.
    Mercier, M.
    Velho, P.
    Georgiou, Y.
    Mainas, C.
    Nanos, A.
    Martin, J.
    Gomez, A. F.
    Gonzalez, Roberto
    Ilias, P.
    Chalazas, T.
    Chintamani, K.
    PROCEEDINGS OF THE 33RD INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, HPDC 2024, 2024,
  • [22] Secure Wireless Networks: AI-Driven UAV Data Relay
    Zhang, Shiqi
    Wang, Ruyan
    Wu, Dapeng
    Luo, Changqing
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7077 - 7086
  • [23] Secure and Flexible Coded Distributed Matrix Multiplication Based on Edge Computing for Industrial Metaverse
    Qiu, Houming
    Zhu, Kun
    Niyato, Dusit
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2024, 12 (04) : 1026 - 1041
  • [24] Secure Edge Computing in IoT via Online Learning
    Li, Bingcong
    Chen, Tianyi
    Wang, Xin
    Giannakis, Georgios B.
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2149 - 2153
  • [25] AI-Driven Data Management on Distributed Computing for Digital Healthcare
    Akdemir, Bilgehan
    2024 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS, PERCOM WORKSHOPS, 2024, : 251 - 252
  • [26] Lightweight on-edge clustering for wireless AI-driven applications
    Kadhim, Mustafa Raad
    Lu, Guangxi
    Shi, Yinong
    Wang, Jianbo
    Kui, Wu
    IET COMMUNICATIONS, 2025, 19 (01)
  • [27] AI-driven job scheduling in cloud computing: a comprehensive review
    Yousef Sanjalawe
    Salam Al-E’mari
    Salam Fraihat
    Sharif Makhadmeh
    Artificial Intelligence Review, 58 (7)
  • [28] AI-Driven Automation for Optimal Edge Cluster Network Management
    Babou, Cheikh Saliou Mbacke
    Owada, Yasunori
    Inoue, Masugi
    Takizawa, Kenichi
    Kuri, Toshiaki
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [29] AI-Enhanced Offloading in Edge Computing: When Machine Learning Meets Industrial IoT
    Sun, Wen
    Liu, Jiajia
    Yue, Yanlin
    IEEE NETWORK, 2019, 33 (05): : 68 - 74
  • [30] Edge and Fog Computing Enabled AI for IoT -An Overview
    Zou, Zhuo
    Jin, Yi
    Nevalainen, Paavo
    Huan, Yuxiang
    Heikkonen, Jukka
    Westerlund, Tomi
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2019), 2019, : 51 - 56