Impact of pilot flame and hydrogen enrichment on turbulent methane/ hydrogen/air swirling premixed flames in a model gas turbine combustor

被引:1
|
作者
Pignatelli, F. [1 ]
Sanned, D. [2 ]
Derafshzan, S. [2 ]
Szasz, R. Z. [1 ]
Bai, X. S. [1 ]
Richter, M. [2 ]
Ehn, A. [2 ]
Lorstad, D. [3 ]
Petersson, P. [4 ]
Subash, A. A. [2 ]
机构
[1] Lund Univ, Dept Energy Sci, Div Fluid Mech, S-22100 Lund, Sweden
[2] Lund Univ, Dept Phys, Div Combust Phys, S-22100 Lund, Sweden
[3] Siemens Energy AB, Finspang, Sweden
[4] Dantec Dynam A S, Skovlund, Denmark
基金
瑞典研究理事会;
关键词
Swirl-stabilized flames; Pilot flame; IRZ; PIV; OH-PLIF; Flame dynamics; Hydrogen; FRONT STRUCTURE; BLUFF-BODY; BURNING VELOCITY; HIGH-PRESSURE; NATURAL-GAS; OH; FUEL; PLIF; PERFORMANCE; STABILITY;
D O I
10.1016/j.expthermflusci.2023.111124
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work investigates the impact of pilot flame and fuel composition on the structures and stabilization of swirling turbulent premixed methane/hydrogen/air flames in a lab-scale gas turbine model combustor. Simultaneous measurements of the velocity field and OH radicals distribution in the combustor were conducted using particle imaging velocimetry (PIV) and planar laser-induced fluorescence (PLIF) methods, respectively. Flames under stable and close to lean blow-off (LBO) conditions were studied for two fuel mixtures, with a hydrogen mole ratio of 0 and 50 % in the hydrogen/methane mixture, respectively. The studied flames were at a constant Reynolds number of 20,000 with different equivalence ratios. Two pilot-to-global fuel ratios were investigated (2 % and 6 %) while keeping the pilot-to-global air ratio constant at 2 %. Data for non-piloted flames were also acquired for comparison. The pilot flames were shown to extend the operability range. The LBO equivalence ratio of the main flame decreased with increasing fuel mass flow rate in the pilot flames due to the increased amount of hot gases with high concentrations of OH radicals in the outer recirculation zone (ORZ), which significantly enhanced the stabilization of the main flame. The stable flame reaction zone was in the high-speed shear layer between the ORZ and the inner recirculation zone (IRZ). When approaching LBO, the reaction zone was pushed downstream to the IRZ and subsequently decreased the size of IRZ, indicating a strong flow/flame interaction. Hydrogen enrichment was shown to reduce the LBO equivalence ratio. When close to LBO, the OH radicals in the hydrogen-enriched flames were observed in isolated pockets due to differential diffusion, which enhanced resilience to LBO. The flame front curvature, mean progress variable, and flame surface density were calculated from the acquired OH-PLIF data to quantify the impact of fuel composition and pilot flames on the flame structures.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The structure of turbulent stratified and premixed methane/air flames II: Swirling flows
    Sweeney, Mark S.
    Hochgreb, Simone
    Dunn, Matthew J.
    Barlow, Robert S.
    COMBUSTION AND FLAME, 2012, 159 (09) : 2912 - 2929
  • [22] Correlation of flame speed with stretch in turbulent premixed methane/air flames
    Chen, JH
    Im, HG
    TWENTY-SEVENTH SYMPOSIUM (INTERNATIONAL) ON COMBUSTION, VOLS 1 AND 2, 1998, : 819 - 826
  • [23] Correlation of flame speed with stretch in turbulent premixed methane/air flames
    Chen, JH
    Im, HG
    CHEMICAL AND PHYSICAL PROCESSES IN COMBUSTION, 1997, : 95 - 98
  • [24] INVESTIGATION OF FLAME RESPONSE IN A SWIRLING MICROMIX HYDROGEN-METHANE COMBUSTOR
    Liu, Dewen
    Feng, Zhenzhen
    Tian, Xiaojing
    Xu, Liangliang
    Gu, Mingming
    Lin, Yang
    Xia, Xi
    Qi, Fei
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 3B, 2024,
  • [25] Hydrogen enrichment enhances soot formation in swirl-stabilized non-premixed turbulent combustion of ethylene in a model gas turbine combustor
    Vishwanath, Rahul B.
    Gulder, Omer L.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (01) : 889 - 898
  • [26] Reaction zone structures and mixing characteristics of partially premixed swirling CH4/air flames in a gas turbine model combustor
    Meier, W
    Duan, XR
    Weigand, P
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 835 - 842
  • [27] Combustion characteristics of premixed ammonia-hydrogen/air flames in a swirl model combustor
    Kim, Jae Hyun
    Song, Jae Ho
    Ku, Jae Won
    Kim, Young Hoo
    Kwon, Oh Chae
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1075 - 1086
  • [28] Combustion characteristics of premixed ammonia-hydrogen/air flames in a swirl model combustor
    Kim, Jae Hyun
    Song, Jae Ho
    Ku, Jae Won
    Kim, Young Hoo
    Kwon, Oh Chae
    International Journal of Hydrogen Energy, 2024, 49 : 1075 - 1086
  • [29] Effects of hydrogen enrichment on the heat generation and emission of natural gas turbulent premixed flame
    Odeh, Abdulhadi
    Paul, Manosh C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 1176 - 1191
  • [30] Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air
    Okafor, Ekenechukwu C.
    Hayakawa, Akihiro
    Nagano, Yukihide
    Kitagawa, Toshiaki
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) : 2409 - 2417