Impact of pilot flame and hydrogen enrichment on turbulent methane/ hydrogen/air swirling premixed flames in a model gas turbine combustor

被引:1
|
作者
Pignatelli, F. [1 ]
Sanned, D. [2 ]
Derafshzan, S. [2 ]
Szasz, R. Z. [1 ]
Bai, X. S. [1 ]
Richter, M. [2 ]
Ehn, A. [2 ]
Lorstad, D. [3 ]
Petersson, P. [4 ]
Subash, A. A. [2 ]
机构
[1] Lund Univ, Dept Energy Sci, Div Fluid Mech, S-22100 Lund, Sweden
[2] Lund Univ, Dept Phys, Div Combust Phys, S-22100 Lund, Sweden
[3] Siemens Energy AB, Finspang, Sweden
[4] Dantec Dynam A S, Skovlund, Denmark
基金
瑞典研究理事会;
关键词
Swirl-stabilized flames; Pilot flame; IRZ; PIV; OH-PLIF; Flame dynamics; Hydrogen; FRONT STRUCTURE; BLUFF-BODY; BURNING VELOCITY; HIGH-PRESSURE; NATURAL-GAS; OH; FUEL; PLIF; PERFORMANCE; STABILITY;
D O I
10.1016/j.expthermflusci.2023.111124
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work investigates the impact of pilot flame and fuel composition on the structures and stabilization of swirling turbulent premixed methane/hydrogen/air flames in a lab-scale gas turbine model combustor. Simultaneous measurements of the velocity field and OH radicals distribution in the combustor were conducted using particle imaging velocimetry (PIV) and planar laser-induced fluorescence (PLIF) methods, respectively. Flames under stable and close to lean blow-off (LBO) conditions were studied for two fuel mixtures, with a hydrogen mole ratio of 0 and 50 % in the hydrogen/methane mixture, respectively. The studied flames were at a constant Reynolds number of 20,000 with different equivalence ratios. Two pilot-to-global fuel ratios were investigated (2 % and 6 %) while keeping the pilot-to-global air ratio constant at 2 %. Data for non-piloted flames were also acquired for comparison. The pilot flames were shown to extend the operability range. The LBO equivalence ratio of the main flame decreased with increasing fuel mass flow rate in the pilot flames due to the increased amount of hot gases with high concentrations of OH radicals in the outer recirculation zone (ORZ), which significantly enhanced the stabilization of the main flame. The stable flame reaction zone was in the high-speed shear layer between the ORZ and the inner recirculation zone (IRZ). When approaching LBO, the reaction zone was pushed downstream to the IRZ and subsequently decreased the size of IRZ, indicating a strong flow/flame interaction. Hydrogen enrichment was shown to reduce the LBO equivalence ratio. When close to LBO, the OH radicals in the hydrogen-enriched flames were observed in isolated pockets due to differential diffusion, which enhanced resilience to LBO. The flame front curvature, mean progress variable, and flame surface density were calculated from the acquired OH-PLIF data to quantify the impact of fuel composition and pilot flames on the flame structures.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Pilot impact on turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor
    Pignatelli, F.
    Kim, H.
    Subash, A. A.
    Liu, X.
    Szasz, R. Z.
    Bai, X. S.
    Brackmann, C.
    Alden, M.
    Lorstad, D.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (60) : 25404 - 25417
  • [2] Structure and thermoacoustic instability of turbulent swirling lean premixed methane/hydrogen/air flames in a model combustor
    Ji, Longjuan
    Wang, Jinhua
    Zhang, Weijie
    Wang, Yuncheng
    Huang, Zuohua
    Bai, Xue-Song
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 890 - 901
  • [3] Investigation of turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor
    Liu, Xin
    Bertsch, Michael
    Subash, Arman Ahamed
    Yu, Senbin
    Szasz, Robert-Zoltan
    Li, Zhongshan
    Petersson, Per
    Bai, Xue-Song
    Alden, Marcus
    Lorstad, Daniel
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (24) : 13377 - 13388
  • [4] Effects of hydrogen enrichment on CH4/Air turbulent swirling premixed flames in a cuboid combustor
    Park, Joonhwi
    Minamoto, Yuki
    Shimura, Masayasu
    Tanahashi, Mamoru
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (15) : 9039 - 9051
  • [5] DNS of turbulent swirling premixed flame in a micro gas turbine combustor
    Tanaka, Shoichi
    Shimura, Masayasu
    Fukushima, Naoya
    Tanahashi, Mamoru
    Miyauchi, Toshio
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 3293 - 3300
  • [6] Flame characteristics of hydrogen-enriched methane-air premixed swirling flames
    Kim, Han S.
    Arghode, Vaibhav K.
    Gupta, Ashwani K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 1063 - 1073
  • [7] Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor
    Benim, Ali Cemal
    Iqbal, Sohail
    Meier, Wolfgang
    Joos, Franz
    Wiedermann, Alexander
    APPLIED THERMAL ENGINEERING, 2017, 110 : 202 - 212
  • [8] Local flame structure in hydrogen-air turbulent premixed flames
    Tanahashi, M
    Ito, Y
    Fujimura, M
    Miyauchi, T
    IUTAM SYMPOSIUM ON TURBULENT MIXING AND COMBUSTION, 2002, 70 : 269 - 277
  • [9] Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor
    Wang, Haiou
    Luo, Kun
    Lu, Shuqiang
    Fan, Jianren
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (21) : 13838 - 13849
  • [10] DNS of swirling hydrogen-air premixed flames
    Minamoto, Yuki
    Aoki, Kozo
    Tanahashi, Mamoru
    Swaminathan, Nedunchezhian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) : 13604 - 13620