Landslide Susceptibility Prediction Using Machine Learning Methods: A Case Study of Landslides in the Yinghu Lake Basin in Shaanxi

被引:3
|
作者
Ma, Sheng [1 ]
Chen, Jian [1 ]
Wu, Saier [1 ]
Li, Yurou [1 ]
机构
[1] China Univ Geosci, Sch Engn & Technol, Beijing 100083, Peoples R China
关键词
landslide susceptibility prediction; machine learning; landslide inventory; non-landslide; LOGISTIC-REGRESSION; DECISION TREE; RANDOM FOREST; GIS; MODEL; THRESHOLD; RAINFALL; PERFORMANCE; INVENTORY;
D O I
10.3390/su152215836
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landslide susceptibility prediction (LSP) is the basis for risk management and plays an important role in social sustainability. However, the modeling process of LSP is constrained by various factors. This paper approaches the effect of landslide data integrity, machine-learning (ML) models, and non-landslide sample-selection methods on the accuracy of LSP, taking the Yinghu Lake Basin in Ankang City, Shaanxi Province, as an example. First, previous landslide inventory (totaling 46) and updated landslide inventory (totaling 46 + 176) were established through data collection, remote-sensing interpretation, and field investigation. With the slope unit as the mapping unit, twelve conditioning factors, including elevation, slope, aspect, topographic relief, elevation variation coefficient, slope structure, lithology, normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), distance to road, distance to river, and rainfall were selected. Next, the initial landslide susceptibility mapping (LSM) was obtained using the K-means algorithm, and non-landslide samples were determined using two methods: random selection and semi-supervised machine learning (SSML). Finally, the random forest (RF) and artificial neural network (ANN) machine-learning methods were used for modeling. The research results showed the following: (1) The performance of supervised machine learning (SML) (RF, ANN) is generally superior to unsupervised machine learning (USML) (K-means). Specifically, RF in the SML model has the best prediction performance, followed by ANN. (2) The selection method of non-landslide samples has a significant impact on LSP, and the accuracy of the SSML-based non-landslide selection method is controlled by the ratio of the number of landslide samples to the number of mapping units. (3) The quantity of landslides has an impact on how reliably the results of LSM are obtained because fewer landslides result in a smaller sample size for LSM, which deviates from reality. Although the results in this dataset are satisfactory, the zoning results cannot reliably anticipate the recently added landslide data discovered by the interpretation of remote-sensing data and field research. We propose that the landslide inventory can be increased by remote sensing in order to achieve accurate and impartial LSM since the LSM of adequate landslide samples is more reasonable. The research results of this paper will provide a reference basis for uncertain analysis of LSP and regional landslide risk management.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Understanding Landslide Susceptibility in Northern Chilean Patagonia: A Basin-Scale Study Using Machine Learning and Field Data
    Lizama, Elizabet
    Morales, Bastian
    Somos-Valenzuela, Marcelo
    Chen, Ningsheng
    Liu, Mei
    REMOTE SENSING, 2022, 14 (04)
  • [32] Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province
    Xu S.
    Liu J.
    Wang X.
    Zhang Y.
    Lin R.
    Zhang M.
    Liu M.
    Jiang T.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (08): : 1214 - 1222
  • [33] Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
    Goetz, J. N.
    Brenning, A.
    Petschko, H.
    Leopold, P.
    COMPUTERS & GEOSCIENCES, 2015, 81 : 1 - 11
  • [34] Improving the Landslide Susceptibility Prediction Accuracy by Using Genetic Algorithm Optimized Machine Learning Approach
    Zheng, Binbin
    Wang, Jiahe
    Feng, Tingting
    Wang, Wensong
    Wang, Yufei
    Yang, Yonghao
    Wang, Guangjin
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2023, 2023
  • [35] Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China
    Qing Ling
    Qin Zhang
    Jing Zhang
    Lingjie Kong
    Weiqi Zhang
    Li Zhu
    Natural Hazards, 2021, 108 : 925 - 946
  • [36] Prediction of landslide displacement using multi-kernel extreme learning machine and maximum information coefficient based on variational mode decomposition: a case study in Shaanxi, China
    Ling, Qing
    Zhang, Qin
    Zhang, Jing
    Kong, Lingjie
    Zhang, Weiqi
    Zhu, Li
    NATURAL HAZARDS, 2021, 108 (01) : 925 - 946
  • [37] Integrating Knowledge Graph and Machine Learning Methods for Landslide Susceptibility Assessment
    Wu, Qirui
    Xie, Zhong
    Tian, Miao
    Qiu, Qinjun
    Chen, Jianguo
    Tao, Liufeng
    Zhao, Yifan
    REMOTE SENSING, 2024, 16 (13)
  • [38] GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods
    Chen, Xi
    Chen, Wei
    CATENA, 2021, 196
  • [39] LANDSLIDE SUSCEPTIBILITY MAPPING USING MACHINE LEARNING ALGORITHMS STUDY CASE AL HOCEIMA REGION, NORTHERN MOROCCO
    Himmy, Oussama
    Rhinane, Hassan
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 153 - 158
  • [40] Landslide Susceptibility Mapping Using Machine Learning Algorithm: A Case Study Along Karakoram Highway (KKH), Pakistan
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Kalsoom, Isma
    Asghar, Aamir
    Shoaib, Muhammad
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (05) : 849 - 866