Estimation of large covariance matrices with mixed factor structures

被引:1
|
作者
Dai, Runyu [1 ]
Uematsu, Yoshimasa [2 ]
Matsuda, Yasumasa [1 ]
机构
[1] Tohoku Univ, Grad Sch Econ & Management, 27-1 Kawauchi,Aoba Ku, Sendai, Miyagi 9808576, Japan
[2] Hitotsubashi Univ, Grad Sch Social Data Sci, 2-1 Naka, Kunitachi, Tokyo 1868601, Japan
来源
ECONOMETRICS JOURNAL | 2024年 / 27卷 / 01期
关键词
Sparsity-induced weak factor model; SOFAR estimator; factor error structure; sparse covariance matrix; thresholding; FACTOR MODELS; PANEL-DATA; NUMBER; REGRESSION;
D O I
10.1093/ectj/utad018
中图分类号
F [经济];
学科分类号
02 ;
摘要
We extend the principal orthogonal complement thresholding (POET) framework by J. Fan, Y. Liao, and M. Mincheva (2013) to estimate large covariance matrices with a 'mixed' structure of observable and unobservable strong/weak factors, and we call this method the extended POET (ePOET). Especially, the weak factor structure allows the existence of slowly divergent eigenvalues of the covariance matrix that are frequently observed in real data. Under some mild conditions, we derive the uniform consistency of the proposed estimator for the cases with or without observable factors. Furthermore, several simulation studies show that the ePOET achieves good finite-sample performance regardless of data with strong, weak, or mixed factors structure. Finally, we conduct empirical studies to present the practical usefulness of the ePOET.
引用
收藏
页码:62 / 83
页数:22
相关论文
共 50 条
  • [1] Linear shrinkage estimation of large covariance matrices using factor models
    Ikeda, Yuki
    Kubokawa, Tatsuya
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 152 : 61 - 81
  • [2] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    ANNALS OF STATISTICS, 2008, 36 (01): : 199 - 227
  • [3] An overview of the estimation of large covariance and precision matrices
    Fan, Jianqing
    Liao, Yuan
    Liu, Han
    ECONOMETRICS JOURNAL, 2016, 19 (01): : C1 - C32
  • [4] Nonlinear shrinkage estimation of large integrated covariance matrices
    Lam, Clifford
    Feng, Phoenix
    Hu, Charlie
    BIOMETRIKA, 2017, 104 (02) : 481 - 488
  • [5] Estimation of Large Dynamic Covariance Matrices: A Selective Review
    Li, Degui
    ECONOMETRICS AND STATISTICS, 2024, 29 : 16 - 30
  • [6] Shrinkage-to-Tapering Estimation of Large Covariance Matrices
    Chen, Xiaohui
    Wang, Z. Jane
    McKeown, Martin J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 5640 - 5656
  • [7] Large covariance matrices: Estimation and inference in high dimensions
    Johnstone, Iain M.
    Contributions to Probability and Statistics: Applications and Challenges, 2006, : 301 - 301
  • [8] Nonparametric estimation of large covariance matrices of longitudinal data
    Wu, WB
    Pourahmadi, M
    BIOMETRIKA, 2003, 90 (04) : 831 - 844
  • [9] Nonparametric estimation of large covariance matrices with conditional sparsity
    Wang, Hanchao
    Peng, Bin
    Li, Degui
    Leng, Chenlei
    JOURNAL OF ECONOMETRICS, 2021, 223 (01) : 53 - 72
  • [10] ESTIMATION OF COVARIANCE MATRICES IN UNBALANCED RANDOM AND MIXED MULTIVARIATE MODELS
    WESOLOWSKAJANCZAREK, MT
    BIOMETRICAL JOURNAL, 1984, 26 (06) : 665 - 674