Role of vacancies in structural thermalization of binary and high-entropy alloys

被引:0
|
作者
Kristoffersen, Henrik H. [1 ]
Pedersen, Jack K. [1 ]
Rossmeisl, Jan [1 ]
机构
[1] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
Computational thermodynamics; Atomistic simulations; Ab initio calculations; Theory and modeling (kinetics transport; diffusion); Out of equilibrium modeling; FE-MN-NI; SLUGGISH DIFFUSION; SELF-DIFFUSION; LATTICE STRAIN; DISORDER; ORDER; TRANSFORMATION; MODEL;
D O I
10.1016/j.actamat.2023.119398
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vacancy assisted atomic self-diffusion is a major structural thermalization mechanism in bulk metal alloys. Depending on alloy composition, the local atomic environments might stabilize vacancies to such extent that the vacancies become trapped and the atomic self-diffusion part of the thermalization process stalls. The conse-quence is that such alloys get kinetically trapped in disordered structures. In this study, we investigate equimolar AgAu, CuPt, AgPdPtIr, and AgAuCuPdPt alloy thermalizing using Metropolis Monte Carlo simulations in two approaches, one where the alloy structure changes through vacancy migration and one where the structure changes by swapping atomic pairs. By comparing the two approaches, we find that the vacancy is less effective at thermalizing alloys with more elements (i.e. AgPdPtIr and AgAuCuPdPt), more heterogeneous configurational internal energy distributions (i.e. CuPt and AgPdPtIr), and strong interactions between certain elements, e.g. Ir-Ir interactions in AgPdPtIr. In the case of AgPdPtIr, the vacancy cannot thermalize Ir-Ir neighbors even when the vacancy is mobile, because the vacancy has difficulty breaking individual Ir-Ir pairs apart.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Structural Particularities, Prediction, and Synthesis Methods in High-Entropy Alloys
    Caramarin, Stefania
    Badea, Ioana-Cristina
    Mosinoiu, Laurentiu-Florin
    Mitrica, Dumitru
    Serban, Beatrice-Adriana
    Vitan, Nicoleta
    Cursaru, Laura-Madalina
    Pogrebnjak, Alexander
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [22] High-Entropy Alloys (HEAs)
    Gao, Michael C.
    Qiao, Junwei
    METALS, 2018, 8 (02)
  • [23] Progress in High-Entropy Alloys
    Michael C. Gao
    JOM, 2014, 66 : 1964 - 1965
  • [24] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2014, 66 (10) : 1964 - 1965
  • [25] Nanocrystalline high-entropy alloys
    Koch, Carl C.
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (18) : 3435 - 3444
  • [26] An overview of high-entropy alloys
    Ibrahim, Pshdar Ahmed
    Ozkul, Iskender
    Canbay, Canan Aksu
    EMERGENT MATERIALS, 2022, 5 (06) : 1779 - 1796
  • [27] High-entropy alloys.
    Kozak, Roksolana
    Steurer, Walter
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2013, 69 : S497 - S497
  • [28] Orientational high-entropy alloys
    Kumar, Nitesh
    Subramaniam, Anandh
    PHILOSOPHICAL MAGAZINE LETTERS, 2014, 94 (12) : 749 - 754
  • [29] Progress in High-Entropy Alloys
    Gao, Michael C.
    JOM, 2013, 65 (12) : 1749 - 1750
  • [30] An overview of high-entropy alloys
    Pshdar Ahmed Ibrahim
    İskender Özkul
    Canan Aksu Canbay
    Emergent Materials, 2022, 5 : 1779 - 1796