The responses of ecosystem water use efficiency to CO2, nitrogen deposition, and climatic drivers across China

被引:7
|
作者
Cai, Xitian [1 ]
Li, Luyi [1 ]
Fisher, Joshua B. [2 ]
Zeng, Zhenzhong [3 ]
Zhou, Sha [4 ]
Tan, Xuezhi [1 ]
Liu, Bingjun [1 ]
Chen, Xiaohong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Civil Engn, Ctr Water Resources & Environm, Guangzhou 510275, Peoples R China
[2] Chapman Univ, Schmid Coll Sci & Technol, Orange, CA 92866 USA
[3] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
[4] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Water use efficiency; Ecosystem; Climate change; Machine learning; MODEL INTERCOMPARISON PROJECT; PROGRAM MULTISCALE SYNTHESIS; LIGHT USE EFFICIENCY; TERRESTRIAL ECOSYSTEMS; EDDY COVARIANCE; ELEVATED CO2; CARBON; FOREST; EVAPOTRANSPIRATION; FERTILIZATION;
D O I
10.1016/j.jhydrol.2023.129696
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The responses of ecosystem water use efficiency (WUE) to environmental perturbations are non-linearly dependent on how strongly coupled are water and carbon cycling. Here, we evaluate the structure of these non-linearities using two high-fidelity explainable machine learning (XML) models to disentangle the confounding effects of the air temperature (Ta), precipitation (PR), downward shortwave radiation (SR), atmospheric CO2 concentration (Ca), and nitrogen deposition (Ndep) on WUE. The findings suggest that mean annual PR plays a dominant role in shaping the spatial pattern of WUE. Spatially, WUE responded positively to PR and Ca but negatively to Ta and SR, while Ndep had little impact on WUE. For temporal trends, the spatial pattern of the mean annual WUE determined the spatial pattern of the WUE trend. Furthermore, the spatial patterns of the Ndep and Ca trends also contributed substantially to the spatial pattern of the WUE trend. Notably, the WUE and Ca trends exhibited negative correlations, while the WUE and Ndep trends showed positive or negative correlations depending on the different nutrient constraints on vegetation. The WUE growth rate responded negatively to SR in both spatial patterns and temporal trends. Additionally, using the trend of 0.077 K yr(-1) and 0 mm yr(-1) as the threshold, the trends of Ta and PR shifted from positive to negative relationships on WUE growth. Our results help identify key sensitivities and thresholds in WUE to environmental controls over space and time.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] THE INTERACTION OF RISING CO2 AND TEMPERATURES WITH WATER-USE EFFICIENCY
    EAMUS, D
    PLANT CELL AND ENVIRONMENT, 1991, 14 (08): : 843 - 852
  • [42] Water use efficiency in Phaseolus vulgaris exposed to elevated CO2
    Mjwara, JM
    Botha, CEJ
    SECOND INTERNATIONAL SYMPOSIUM ON IRRIGATION OF HORTICULTURAL CROPS, VOLS 1 AND 2, 1997, (449): : 439 - 447
  • [43] Impact of atmospheric CO2 concentration on water use efficiency of maize
    Bethenod, O
    Ruget, F
    Katerji, N
    Combe, L
    Renard, D
    MAYDICA, 2001, 46 (02): : 75 - 80
  • [44] The Variations of Satellite-Based Ecosystem Water Use and Carbon Use Efficiency and Their Linkages with Climate and Human Drivers in the Songnen Plain, China
    Li, Bo
    Huang, Fang
    Chang, Shuai
    Sun, Ning
    ADVANCES IN METEOROLOGY, 2019, 2019
  • [45] Potential of the remotely-derived products in monitoring ecosystem water use efficiency across grasslands in Northern China
    Wei, Jin
    Chen, Yanan
    Gu, Qing
    Jiang, Chongya
    Ma, Mingguo
    Song, Lisheng
    Tang, Xuguang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (16) : 6203 - 6223
  • [46] Critical thresholds for nonlinear responses of ecosystem water use efficiency to drought
    Hu, Ying
    Wei, Fangli
    Wang, Shuai
    Zhang, Wenmin
    Fensholt, Rasmus
    Xiao, Xiangming
    Fu, Bojie
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 918
  • [47] Water regime of model forest ecosystems under elevated CO2 and nitrogen deposition
    Sonnleitner, M
    Attinger, W
    Schulin, R
    IMPACTS OF GLOBAL CHANGE ON TREE PHYSIOLOGY AND FOREST ECOSYSTEMS, 1998, 52 : 325 - 330
  • [48] Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China
    Zhu, Qiuan
    Jiang, Hong
    Peng, Changhui
    Liu, Jinxun
    Wei, Xiaohua
    Fang, Xiuqin
    Liu, Shirong
    Zhou, Guomo
    Yu, Shuquan
    ECOLOGICAL MODELLING, 2011, 222 (14) : 2414 - 2429
  • [49] CO2 fertilization is spatially distinct from stomatal conductance reduction in controlling ecosystem water-use efficiency increase
    Zhang, Xuanze
    Zhang, Yongqiang
    Tian, Jing
    Ma, Ning
    Wang, Ying-Ping
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (05)
  • [50] Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China
    Xu, Hao-jie
    Wang, Xin-ping
    Zhao, Chuan-yan
    Zhang, Xiao-xiao
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 278