Deep learning radiomics-based preoperative prediction of recurrence in chronic rhinosinusitis

被引:4
|
作者
He, Shaojuan [1 ,2 ]
Chen, Wei [3 ]
Li, Anning [2 ]
Xie, Xinyu [1 ]
Liu, Fangying [1 ]
Ma, Xinyi [1 ]
Feng, Xin [1 ]
Wang, Xuehai [4 ]
Li, Xuezhong [1 ]
机构
[1] Shandong Univ, Qilu Hosp, Dept Otorhinolaryngol, NHC Key Lab Otorhinolaryngol, Jinan, Peoples R China
[2] Shandong Univ, Qilu Hosp, Dept Radiol, Jinan, Peoples R China
[3] Shandong Univ, Sch & Hosp Stomatol, Cheeloo Coll Med, Jinan, Peoples R China
[4] Weihai Municipal Hosp, Dept Otorhinolaryngol, Weihai, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ENDOSCOPIC SINUS SURGERY; POLYP RECURRENCE; ALGORITHM; ASTHMA;
D O I
10.1016/j.isci.2023.106527
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chronic rhinosinusitis (CRS) is characterized by poor prognosis and propensity for recurrence even after surgery. Identification of those CRS patients with high risk of relapse preoperatively will contribute to personalized treatment recommendations. In this paper, we proposed a multi-task deep learning network for sinus segmentation and CRS recurrence prediction simultaneously to develop and validate a deep learning radiomics-based nomogram for preoperatively predicting recurrence in CRS patients who needed surgical treatment. 265 paranasal sinuses computed tomography (CT) images of CRS from two independent medical centers were analyzed to build and test models. The sinus segmentation model achieved good segmentation results. Furthermore, the nomogram combining a deep learning signature and clinical factors also showed excellent recurrence prediction ability for CRS. Our study not only facilitates a technique for sinus segmentation but also provides a noninvasive method for preoperatively predicting recurrence in patients with CRS.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Deep learning radiomics-based prediction model of metachronous distant metastasis following curative resection for retroperitoneal leiomyosarcoma: a bicentric study
    Tian, Zhen
    Cheng, Yifan
    Zhao, Shuai
    Li, Ruiqi
    Zhou, Jiajie
    Sun, Qiannan
    Wang, Daorong
    CANCER IMAGING, 2024, 24 (01)
  • [32] Machine learning for radiomics-based multimodality and multiparametric modeling
    Wei, Lise
    Osman, Sarah
    Hatt, Mathieu
    El Naqa, Issam
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 63 (04): : 323 - 338
  • [33] Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis
    Jin, Jin
    Jiang, Ying
    Zhao, Yu -Lan
    Huang, Pin -Tong
    ACADEMIC RADIOLOGY, 2024, 31 (02) : 467 - 479
  • [34] Advancing NSCLC pathological subtype prediction with interpretable machine learning: a comprehensive radiomics-based approach
    Kuang, Bingling
    Zhang, Jingxuan
    Zhang, Mingqi
    Xia, Haoming
    Qiang, Guangliang
    Zhang, Jiangyu
    FRONTIERS IN MEDICINE, 2024, 11
  • [35] Synthetic MRI improves radiomics-based glioblastoma survival prediction
    Moya-Saez, Elisa
    Navarro-Gonzalez, Rafael
    Cepeda, Santiago
    Perez-Nunez, Angel
    De Luis-Garcia, Rodrigo
    Aja-Fernandez, Santiago
    Alberola-Lopez, Carlos
    NMR IN BIOMEDICINE, 2022, 35 (09)
  • [36] RADIOMICS-BASED MODEL FOR OUTCOME PREDICTION IN PRIMARY SCLEROSING CHOLANGITIS
    Cristoferi, L.
    Porta, M.
    Bernasconi, D. P.
    Leonardi, F.
    Mulinacci, G.
    Palermo, A.
    Gerussi, A.
    Scaravaglio, M.
    Gallo, C.
    D'Amato, D.
    Maino, C.
    Ippolito, D.
    Ferreira, C.
    Mavar, M.
    Rajarshi, B.
    Antolini, L.
    Valsecchi, M. G.
    Fagiuoli, S.
    Invernizzi, P.
    Carbone, M.
    DIGESTIVE AND LIVER DISEASE, 2022, 54 : S66 - S67
  • [37] RADIOMICS-BASED MODEL FOR OUTCOME PREDICTION IN PRIMARY SCLEROSING CHOLANGITIS
    Cristoferi, Laura
    Porta, Marco
    Bernasconi, Davide Paolo
    Leonardi, Filippo
    Mulinacci, Giacomo
    Palermo, Andrea
    Gerussi, Alessio
    Gallo, Camilla
    Scaravaglio, Miki
    Stucchi, Eliana
    Maino, Cesare
    Ippolito, Davide
    D'Amato, Daphne
    Ferreira, Carlos
    Mavar, Marija
    Banerjee, Rajarshi
    Antolini, Laura
    Valsecchi, Maria Grazia
    Fagiuoli, Stefano
    Invernizzi, Pietro
    Carbone, Marco
    GASTROENTEROLOGY, 2022, 162 (07) : S1286 - S1287
  • [38] Prediction of Radiomics-Based Machine Learning for Specific Dosimetric Verification of Pelvic Intensity Modulated Radiotherapy
    Ni, Q.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E479 - E480
  • [39] External validation of radiomics and deep learning models for recurrence-free survival prediction
    Li, Y.
    Ma, B.
    Chu, H.
    Langendijk, J. Albertus
    van Dijk, L. Vania
    Sijtsema, N. Maria
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S29 - S30
  • [40] Radiomics-based prediction of FIGO grade for placenta accreta spectrum
    Helena C. Bartels
    Jim O’Doherty
    Eric Wolsztynski
    David P. Brophy
    Roisin MacDermott
    David Atallah
    Souha Saliba
    Constance Young
    Paul Downey
    Jennifer Donnelly
    Tony Geoghegan
    Donal J. Brennan
    Kathleen M. Curran
    European Radiology Experimental, 7