Stability and metastability in a chemotaxis model

被引:0
|
作者
Chen, Yimin [1 ]
Tao, Jicheng [2 ]
Han, Yazhou [2 ]
Ma, Manjun [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] China Jiliang Univ, Coll Sci, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Pattern formation; stability and metastability; chemotaxis model; SINGULARITY FORMATION; STATIONARY SOLUTIONS; PATTERNS;
D O I
10.1142/S1793524522500887
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work studies the stability and metastability of stationary patterns in a diffusion-chemotaxis model without cell proliferation. We first establish the interval of unstable wave modes of the homogeneous steady state, and show that the chemotactic flux is the key mechanism for pattern formation. Then, we treat the chemotaxis coefficient as a bifurcation parameter to obtain the asymptotic expressions of steady states. Based on this, we derive the sufficient conditions for the stability of one-step pattern, and prove the metastability of two or more step patterns. All the analytical results are demonstrated by numerical simulations.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Stability of spiky solution of Keller-Segel's minimal chemotaxis model
    Chen, Xinfu
    Hao, Jianghao
    Wang, Xuefeng
    Wu, Yaping
    Zhang, Yajing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (09) : 3102 - 3134
  • [42] Dominance of chemotaxis in a chemotaxis-haptotaxis model
    Tao, Youshan
    Winkler, Michael
    NONLINEARITY, 2014, 27 (06) : 1225 - 1239
  • [43] STATIONARY SOLUTIONS OF A VOLUME-FILLING CHEMOTAXIS MODEL WITH LOGISTIC GROWTH AND THEIR STABILITY
    Ma, Manjun
    Ou, Chunhua
    Wang, Zhi-An
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (03) : 740 - 766
  • [44] On the Metastability in Three Modifications of the Ising Model
    Bashiri, K.
    MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (03) : 483 - 532
  • [45] Topology and metastability in the lattice Skyrme model
    Schramm, AJ
    Svetitsky, B
    PHYSICAL REVIEW D, 2000, 62 (11): : 1 - 7
  • [46] Stochastic model of phase transition and metastability
    A. I. Kirillov
    V. Yu. Mamakin
    Theoretical and Mathematical Physics, 2000, 123 : 494 - 503
  • [47] METASTABILITY AND SPINODALS IN LATTICE GAS MODEL
    DOMB, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (02): : 283 - 299
  • [48] HYSTERESIS AND METASTABILITY IN A CONTINUUM SANDPILE MODEL
    BOUCHAUD, JP
    CATES, ME
    PRAKASH, JR
    EDWARDS, SF
    PHYSICAL REVIEW LETTERS, 1995, 74 (11) : 1982 - 1985
  • [49] Metastability in an open quantum Ising model
    Rose, Dominic C.
    Macieszczak, Katarzyna
    Lesanovsky, Igor
    Garrahan, Juan P.
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [50] METASTABILITY OF SOLITONS IN A GENERALIZED SKYRME MODEL
    POTTINGER, DEL
    RATHSKE, E
    PHYSICAL REVIEW D, 1986, 33 (08) : 2448 - 2454