Soil CO2, CH4 and N2O fluxes in open lawns, treed lawns and urban woodlands in Angers, France

被引:3
|
作者
Kunnemann, Tom [1 ]
Cannavo, Patrice [1 ]
Guerin, Vincent [2 ]
Guenon, Rene [1 ]
机构
[1] Inst Agro, EPHOR, F-49000 Angers, France
[2] Univ Angers, Inst Agro, INRAE, IRHS,SFR QUASAV, F-49000 Angers, France
关键词
Shading; Management intensity; Soil respiration; Carbon sequestration; Urban green space; ORGANIC-CARBON STOCKS; NITROUS-OXIDE EMISSIONS; PHOSPHORUS ADDITION; TURFGRASS SYSTEMS; METHANE UPTAKE; NO EMISSIONS; FOREST SOILS; TURF GRASS; LAND-USE; RESPIRATION;
D O I
10.1007/s11252-023-01407-y
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Urban green spaces (UGSs) are mostly represented by lawns and wooded areas. These UGSs can store carbon in soil and above-ground biomass, potentially modulated by management intensity and vegetation cover. Trees in lawns can create a local microclimate modifying soil biogeochemical cycles affecting in turn greenhouse gas (GHG) emissions. The objective of this study was to assess the effects of trees on microclimate (temperature and moisture) and soil properties influencing GHG fluxes in contrasted UGS types. We monthly monitored (from March to November 2021) and compared soil CO2, CH4 and N2O fluxes simultaneously with surface temperature and moisture in treed lawns, open lawns and urban woodlands. Lawns included 4 different management intensities including mowing, irrigation and fertilization practices. Temperature was the best predictor of soil respiration in all UGS types studied and was the highest in open lawns. We showed that moisture reflected by the water filled pore space (WFPS) significantly added on variation explanation. The shading of trees decreased soil respiration by 34% in treed lawns while soil properties were similar, indicating a straightforward effect of lowering temperature. On the contrary, in woodland soils the lower rates of soil respiration were attributed to both soil properties and temperature decreasing. Urban woodlands were a sink for CH4 throughout the year (- 0.19 mg m over bar (2) h over bar (1)). Methane consumption in lawns was small and even a CH4 source in irrigated parks when WFPS overpassed 75%. N2O fluxes were small (0.014 mg m over bar (2) h over bar (1)) probably reflecting the transition already made from mineral to controlled-release fertilization limiting N availability.
引用
收藏
页码:1659 / 1672
页数:14
相关论文
共 50 条
  • [41] Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China
    Chen, G. C.
    Tam, N. F. Y.
    Ye, Y.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2010, 408 (13) : 2761 - 2767
  • [42] Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary
    Sanchez-Rodriguez, J.
    Sierra, A.
    Jimenez-Lopez, D.
    Ortega, T.
    Gomez-Parra, A.
    Forja, J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 805
  • [43] Short-term effects of thinning on soil CO2, N2O and CH4 fluxes in Mediterranean forest ecosystems
    Mazza, Gianluigi
    Agnelli, Alessandro E.
    Cantiani, Paolo
    Chiavetta, Ugo
    Doukalianou, Foteini
    Kitikidou, Kyriaki
    Milios, Elias
    Orfanoudakis, Michail
    Radoglou, Kalliopi
    Lagomarsino, Alessandra
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 651 : 713 - 724
  • [44] Fluxes and production of N2O, CO2 and CH4 in boreal agricultural soil during winter as affected by snow cover
    Maljanen, M.
    Kohonen, A. -R.
    Virkajarvi, P.
    Martikainen, P. J.
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2007, 59 (05): : 853 - 859
  • [45] Responses of CO2, N2O and CH4 fluxes between atmosphere and forest soil to changes in multiple environmental conditions
    Yan, Junhua
    Zhang, Wei
    Wang, Keya
    Qin, Fen
    Wang, Wantong
    Dai, Huitang
    Li, Peixue
    GLOBAL CHANGE BIOLOGY, 2014, 20 (01) : 300 - 312
  • [46] N2O AND CH4 FLUXES IN SOIL INFLUENCED BY FERTILIZATION AND TRACTOR TRAFFIC
    HANSEN, S
    MAEHLUM, JE
    BAKKEN, LR
    SOIL BIOLOGY & BIOCHEMISTRY, 1993, 25 (05): : 621 - 630
  • [47] Spatial Variability of CO2, CH4, and N2O Fluxes during Midsummer in the Steppe of Northern China
    Cheng, Jianzhong
    Lee, Xinqing
    Theng, Benny K. G.
    Fang, Bin
    Yang, Fang
    Wang, Bing
    Zhang, Like
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2014, 23 (02): : 319 - 328
  • [48] Cold season CH4, CO2 and N2O fluxes from freshwater marshes in northeast China
    Zhang, JB
    Song, CC
    Yang, WY
    CHEMOSPHERE, 2005, 59 (11) : 1703 - 1705
  • [49] Effects of increasing organic nitrogen inputs on CO2, CH4, and N2O fluxes in a temperate grassland
    Chen, Jihui
    Zhang, Yingjun
    Yang, Yi
    Tao, Tingting
    Sun, Xiao
    Guo, Peng
    ENVIRONMENTAL POLLUTION, 2021, 268
  • [50] Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems
    Pavelka, Marian
    Acosta, Manuel
    Kiese, Ralf
    Altimir, Nuria
    Bruemmer, Christian
    Crill, Patrick
    Darenova, Eva
    Fuss, Roland
    Gielen, Bert
    Graf, Alexander
    Klemedtsson, Leif
    Lohila, Annalea
    Longdoz, Bernhard
    Lindroth, Anders
    Nilsson, Mats
    Jimenez, Sara Maranon
    Merbold, Lutz
    Montagnani, Leonardo
    Peichl, Matthias
    Pihlatie, Mari
    Pumpanen, Jukka
    Ortiz, Penelope Serrano
    Silvennoinen, Hanna
    Skiba, Ute
    Vestin, Patrik
    Weslien, Per
    Janous, Dalibor
    Kutsch, Werner
    INTERNATIONAL AGROPHYSICS, 2018, 32 (04) : 569 - +