A Multi-Attention Approach for Person Re-Identification Using Deep Learning

被引:5
|
作者
Saber, Shimaa [1 ]
Meshoul, Souham [2 ]
Amin, Khalid [1 ]
Plawiak, Pawel [3 ,4 ]
Hammad, Mohamed [1 ]
机构
[1] Menoufia Univ, Fac Comp & Informat, Informat Technol Dept, Shibin Al Kawm 32511, Egypt
[2] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
[3] Cracow Univ Technol, Fac Comp Sci & Telecommun, Dept Comp Sci, Warszawska 24, PL-31155 Krakow, Poland
[4] Polish Acad Sci, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
关键词
ECA; deep learning; PAM; person re-identification; multi-attention; NETWORK; REPRESENTATION;
D O I
10.3390/s23073678
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Person re-identification (Re-ID) is a method for identifying the same individual via several non-interfering cameras. Person Re-ID has been felicitously applied to an assortment of computer vision applications. Due to the emergence of deep learning algorithms, person Re-ID techniques, which often involve the attention module, have gained remarkable success. Moreover, people's traits are mostly similar, which makes distinguishing between them complicated. This paper presents a novel approach for person Re-ID, by introducing a multi-part feature network, that combines the position attention module (PAM) and the efficient channel attention (ECA). The goal is to enhance the accuracy and robustness of person Re-ID methods through the use of attention mechanisms. The proposed multi-part feature network employs the PAM to extract robust and discriminative features by utilizing channel, spatial, and temporal context information. The PAM learns the spatial interdependencies of features and extracts a greater variety of contextual information from local elements, hence enhancing their capacity for representation. The ECA captures local cross-channel interaction and reduces the model's complexity, while maintaining accuracy. Inclusive experiments were executed on three publicly available person Re-ID datasets: Market-1501, DukeMTMC, and CUHK-03. The outcomes reveal that the suggested method outperforms existing state-of-the-art methods, and the rank-1 accuracy can achieve 95.93%, 89.77%, and 73.21% in trials on the public datasets Market-1501, DukeMTMC-reID, and CUHK03, respectively, and can reach 96.41%, 94.08%, and 91.21% after re-ranking. The proposed method demonstrates a high generalization capability and improves both quantitative and qualitative performance. Finally, the proposed multi-part feature network, with the combination of PAM and ECA, offers a promising solution for person Re-ID, by combining the benefits of temporal, spatial, and channel information. The results of this study evidence the effectiveness and potential of the suggested method for person Re-ID in computer vision applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Cross-modal person re-identification based on deep attention hash learning
    Zhang, Rui
    Cao, Yihao
    Zhang, Weiquan
    Cai, Xingjuan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (28):
  • [32] Person Re-Identification Research via Deep Learning
    Lu Jian
    Chen Xu
    Luo Maoxin
    Wang Hangying
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (16)
  • [33] Deep Parts Similarity Learning for Person Re-Identification
    Jose Gomez-Silva, Maria
    Maria Armingol, Jose
    de la Escalera, Arturo
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 419 - 428
  • [34] A survey of person re-identification based on deep learning
    Li Q.
    Hu W.-Y.
    Li J.-Y.
    Liu Y.
    Li M.-X.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (05): : 920 - 932
  • [35] Deep-Person: Learning discriminative deep features for person Re-Identification
    Bai, Xiang
    Yang, Mingkun
    Huang, Tengteng
    Dou, Zhiyong
    Yu, Rui
    Xu, Yongchao
    PATTERN RECOGNITION, 2020, 98
  • [36] Person Re-Identification by Deep Joint Learning of Multi-Loss Classification
    Li, Wei
    Zhu, Xiatian
    Gong, Shaogang
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2194 - 2200
  • [37] A Survey on Deep Learning Based Person Re-identification
    Luo H.
    Jiang W.
    Fan X.
    Zhang S.-P.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (11): : 2032 - 2049
  • [38] Deep Hybrid Similarity Learning for Person Re-Identification
    Zhu, Jianqing
    Zeng, Huanqiang
    Liao, Shengcai
    Lei, Zhen
    Cai, Canhui
    Zheng, Lixin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) : 3183 - 3193
  • [39] Survey on person re-identification based on deep learning
    Wang, Kejun
    Wang, Haolin
    Liu, Meichen
    Xing, Xianglei
    Han, Tian
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2018, 3 (04) : 219 - 227
  • [40] Deep Learning for Person Re-Identification: A Survey and Outlook
    Ye, Mang
    Shen, Jianbing
    Lin, Gaojie
    Xiang, Tao
    Shao, Ling
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (06) : 2872 - 2893