Joint Maximum Likelihood Estimation of Microphone Array Parameters for a Reverberant Single Source Scenario

被引:3
|
作者
Li, Changheng [1 ]
Martinez, Jorge [1 ]
Hendriks, Richard Christian [1 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, NL-2628 CD Delft, Netherlands
关键词
Maximum likelihood estimation; Array signal processing; Noise reduction; Transfer functions; Signal processing algorithms; Parallel processing; Microphone arrays; Dereverberation; maximum likelihood estima- tion; microphone array signal processing; PSD estimation; RTF estimation; SQUARE ERROR ESTIMATION; SPEECH ENHANCEMENT; IDENTIFICATION; BEAMFORMER; SEPARATION;
D O I
10.1109/TASLP.2022.3231706
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Estimation of the acoustic-scene related parameters such as relative transfer functions (RTFs) from source to microphones, source power spectral densities (PSDs) and PSDs of the late reverberation is essential and also challenging. Existing maximum likelihood estimators typically consider only subsets of these parameters and use each time frame separately. In this paper we explicitly focus on the single source scenario and first propose a joint maximum likelihood estimator (MLE) to estimate all parameters jointly using a single time frame. Since the RTFs are typically invariant for a number of consecutive time frames we also propose a joint maximum likelihood estimator (MLE) using multiple time frames which has similar estimation performance compared to a recently proposed reference algorithm called simultaneously confirmatory factor analysis (SCFA), but at a much lower complexity. Moreover, we present experimental results which demonstrate that the estimation accuracy, together with the performance of noise reduction, speech quality and speech intelligibility, of our proposed joint MLE outperform those of existing MLE based approaches that use only a single time frame.
引用
收藏
页码:695 / 705
页数:11
相关论文
共 50 条
  • [41] MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS IN RENEWAL MODELS
    BASAWA, IV
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2191 - &
  • [42] Approximate Maximum Likelihood Estimation of Circle Parameters
    Y. T. Chan
    B. H. Lee
    S. M. Thomas
    Journal of Optimization Theory and Applications, 2005, 125 : 723 - 734
  • [43] Maximum Likelihood Estimation of Asymmetric Laplace Parameters
    Samuel Kotz
    Tomasz J. Kozubowski
    Krzysztof Podgórski
    Annals of the Institute of Statistical Mathematics, 2002, 54 : 816 - 826
  • [44] MAXIMUM LIKELIHOOD ESTIMATION OF SEISMIC SIGNAL PARAMETERS
    URSIN, B
    GEOPHYSICS, 1977, 42 (07) : 1545 - 1545
  • [45] Maximum Likelihood Estimation of Spatial Covariance Parameters
    Eulogio Pardo-Igúzquiza
    Mathematical Geology, 1998, 30 : 95 - 108
  • [46] Maximum likelihood estimation for array processing in colored noise
    Nagesha, V
    Kay, S
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (02) : 169 - 180
  • [47] Maximum Likelihood Parameters Estimation in Non-Uniform Noise Fields using Moving Array
    Xie, Da
    Niu, Tingting
    Huang, Jianguo
    Ge, Hongya
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 1732 - +
  • [48] Joint Maximum Likelihood Estimation for Diagnostic Classification Models
    Chia-Yi Chiu
    Hans-Friedrich Köhn
    Yi Zheng
    Robert Henson
    Psychometrika, 2016, 81 : 1069 - 1092
  • [49] Joint Maximum Likelihood Estimation for Diagnostic Classification Models
    Chiu, Chia-Yi
    Kohn, Hans-Friedrich
    Zheng, Yi
    Henson, Robert
    PSYCHOMETRIKA, 2016, 81 (04) : 1069 - 1092
  • [50] Joint Estimation of State and Parameter with Maximum Likelihood Method
    Zhuang, Huiping
    Lu, Jieying
    Li, Junhui
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5276 - 5281