Moving horizon estimation based on distributionally robust optimisation

被引:0
|
作者
Yang, Aolei [1 ]
Wang, Hao [1 ]
Sun, Qing [1 ]
Fei, Minrui [1 ]
机构
[1] Shanghai Univ, Sch Mecharon Engn & Automat, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Distributionally robust optimisation; moving horizon estimation; Wasserstein metric; state estimation; SYSTEMS;
D O I
10.1080/00207721.2024.2305691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel moving horizon estimation approach based on distributionally robust optimisation to tackle the state estimation problem of non-linear systems with missing noise distribution information. The proposed method adopts a fuzzy set to mitigate the impact of uncertainties on state estimation. Specifically, the method derives an empirical distribution within the prediction window using a priori data and constructs a fuzzy sphere set using the Wasserstein metric with the empirical distribution as the sphere centre. This enables the estimation of the state sequence under the worst probability distribution of the fuzzy set. To demonstrate the effectiveness of the proposed method, a simple simulation example is conducted to compare its performance with that of traditional moving horizon estimation. The results provide evidence of the feasibility and superiority of the proposed approach.
引用
收藏
页码:1363 / 1376
页数:14
相关论文
共 50 条
  • [41] Computationally Tractable Robust Moving Horizon Estimation Using an Approximate Convex Hull
    Sartipizadeh, Hossein
    Vincent, Tyrone L.
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3757 - 3762
  • [42] Robust monitoring of solvent based carbon capture process using deep learning network based moving horizon estimation
    Wang, Qihao
    Zheng, Cheng
    Wu, Xiao
    Wang, Meihong
    FUEL, 2022, 321
  • [43] Confidence regions in Wasserstein distributionally robust estimation
    Blanchet, Jose
    Murthy, Karthyek
    Si, Nian
    BIOMETRIKA, 2022, 109 (02) : 295 - 315
  • [44] Distributionally Robust State Estimation for Nonlinear Systems
    Wang, Shixiong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4408 - 4423
  • [45] Moving Horizon Estimation for Moving Long Baseline based on Linear Positioning Model
    Chen, Wei
    Yan, Weisheng
    Cui, Rongxin
    IFAC PAPERSONLINE, 2016, 49 (05): : 115 - 119
  • [46] Regularization for Distributionally Robust State Estimation and Prediction
    Brouillon, Jean-Sebastien
    Doerfler, Florian
    Ferrari-Trecate, Giancarlo
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2713 - 2718
  • [47] Robust moving horizon state observer
    Chu, D.
    Chen, T.
    Marquez, H. J.
    INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (10) : 1636 - 1650
  • [48] Minimum Energy Estimation and Moving Horizon Estimation
    Krener, Arthur J.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4952 - 4957
  • [49] Distributed Moving Horizon Estimation via Operator Splitting for Automated Robust Power System State Estimation
    Kim, Jinsung
    Kang, Ji-Han
    Bae, Jinwoo
    Lee, Wonhyung
    Kim, Kwang-Ki K.
    IEEE ACCESS, 2021, 9 : 90428 - 90440
  • [50] Consensus-based distributed moving horizon estimation with constraints
    Huang, Zenghong
    Chen, Zijie
    Liu, Chang
    Xu, Yong
    Shi, Peng
    INFORMATION SCIENCES, 2023, 637