Moving horizon estimation based on distributionally robust optimisation

被引:0
|
作者
Yang, Aolei [1 ]
Wang, Hao [1 ]
Sun, Qing [1 ]
Fei, Minrui [1 ]
机构
[1] Shanghai Univ, Sch Mecharon Engn & Automat, Shanghai, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Distributionally robust optimisation; moving horizon estimation; Wasserstein metric; state estimation; SYSTEMS;
D O I
10.1080/00207721.2024.2305691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel moving horizon estimation approach based on distributionally robust optimisation to tackle the state estimation problem of non-linear systems with missing noise distribution information. The proposed method adopts a fuzzy set to mitigate the impact of uncertainties on state estimation. Specifically, the method derives an empirical distribution within the prediction window using a priori data and constructs a fuzzy sphere set using the Wasserstein metric with the empirical distribution as the sphere centre. This enables the estimation of the state sequence under the worst probability distribution of the fuzzy set. To demonstrate the effectiveness of the proposed method, a simple simulation example is conducted to compare its performance with that of traditional moving horizon estimation. The results provide evidence of the feasibility and superiority of the proposed approach.
引用
收藏
页码:1363 / 1376
页数:14
相关论文
共 50 条
  • [1] Robust Stability of Gaussian Process Based Moving Horizon Estimation
    Wolff, Tobias M.
    Lopez, Victor G.
    Mueller, Matthias A.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4087 - 4093
  • [2] Robust Bayesian inference for moving horizon estimation☆
    Cao, Wenhan
    Liu, Chang
    Lan, Zhiqian
    Li, Shengbo Eben
    Pan, Wei
    Alessandri, Angelo
    AUTOMATICA, 2025, 173
  • [3] A Lyapunov Function for Robust Stability of Moving Horizon Estimation
    Schiller, Julian D.
    Muntwiler, Simon
    Koehler, Johannes
    Zeilinger, Melanie N.
    Mueller, Matthias A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 7466 - 7481
  • [4] Robust Moving Horizon State Estimation for Nonlinear Systems
    Liu, Jinfeng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 253 - 258
  • [5] Robust Moving Horizon State Estimation: Application to Bioprocesses
    Tebbani, Sihem
    Le Brusquet, Laurent
    Petre, Emil
    Selisteanu, Dan
    2013 17TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2013, : 539 - 544
  • [6] Neural Moving Horizon Estimation for Robust Flight Control
    Wang, Bingheng
    Ma, Zhengtian
    Lai, Shupeng
    Zhao, Lin
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 639 - 659
  • [7] Robust Global Exponential Stability for Moving Horizon Estimation
    Knuefer, Sven
    Mueller, Matthias A.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3477 - 3482
  • [8] Robust Moving Horizon Estimation for Lateral Vehicle Dynamics
    Arezki, H.
    Alessandri, A.
    Zemouche, A.
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [9] Differentiable Moving Horizon Estimation for Robust Flight Control
    Wang, Bingheng
    Ma, Zhengtian
    Lai, Shupeng
    Zhao, Lin
    Lee, Tong Heng
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 3563 - 3568
  • [10] Lyapunov-Based MPC with Robust Moving Horizon Estimation and its Triggered Implementation
    Zhang, Jing
    Liu, Jinfeng
    AICHE JOURNAL, 2013, 59 (11) : 4273 - 4286