Data-driven prediction of complex crystal structures of dense lithium

被引:24
|
作者
Wang, Xiaoyang [1 ,2 ,3 ]
Wang, Zhenyu [1 ,2 ]
Gao, Pengyue [1 ,2 ]
Zhang, Chengqian [4 ,5 ]
Lv, Jian [1 ,2 ]
Wang, Han [3 ,6 ]
Liu, Haifeng [3 ]
Wang, Yanchao [1 ,2 ]
Ma, Yanming [1 ,2 ]
机构
[1] Jilin Univ, Coll Phys, Minist Educ, Key Lab Mat Simulat Methods & Software, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Fenghao East Rd 2, Beijing 100094, Peoples R China
[4] DP Technol, Beijing 100080, Peoples R China
[5] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[6] Peking Univ, Coll Engn, CAPT, HEDPS, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
SUPERCONDUCTIVITY; REPRESENTATION;
D O I
10.1038/s41467-023-38650-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium (Li) is a prototypical simple metal at ambient conditions, but exhibits remarkable changes in structural and electronic properties under compression. There has been intense debate about the structure of dense Li, and recent experiments offered fresh evidence for yet undetermined crystalline phases near the enigmatic melting minimum region in the pressure-temperature phase diagram of Li. Here, we report on an extensive exploration of the energy landscape of Li using an advanced crystal structure search method combined with a machine-learning approach, which greatly expands the scale of structure search, leading to the prediction of four complex Li crystal structures containing up to 192 atoms in the unit cell that are energetically competitive with known Li structures. These findings provide a viable solution to the observed yet unidentified crystalline phases of Li, and showcase the predictive power of the global structure search method for discovering complex crystal structures in conjunction with accurate machine learning potentials.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Response Prediction for Linear and Nonlinear Structures Based on Data-Driven Deep Learning
    Liao, Yangyang
    Tang, Hesheng
    Li, Rongshuai
    Ran, Lingxiao
    Xie, Liyu
    APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [22] A Data-Driven Approach for Event Prediction
    Yuen, Jenny
    Torralba, Antonio
    COMPUTER VISION-ECCV 2010, PT II, 2010, 6312 : 707 - 720
  • [23] Data-driven modeling for scoliosis prediction
    Deng, Liming
    Li, Han-Xiong
    Hu, Yong
    Cheung, Jason P. Y.
    Jin, Richu
    Luk, Keith D. K.
    Cheung, Prudence W. H.
    2016 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2016,
  • [24] Flexibility of data-driven process structures
    Mueller, Dominic
    Reichert, Manfred
    Herbst, Joachim
    BUSINESS PROCESS MANAGEMENT WORKSHOPS, 2006, 4103 : 181 - 192
  • [25] Data-driven prediction of air bending
    Vorkov, Vitalii
    Garcia, Alberto Tomas
    Rodrigues, Goncalo Costa
    Duflou, Joost R.
    18TH INTERNATIONAL CONFERENCE ON SHEET METAL, SHEMET 2019 - NEW TRENDS AND DEVELOPMENTS IN SHEET METAL PROCESSING, 2019, 29 : 177 - 184
  • [26] Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review
    Li, Yi
    Liu, Kailong
    Foley, Aoife M.
    Zulke, Alana
    Berecibar, Maitane
    Nanini-Maury, Elise
    Van Mierlo, Joeri
    Hoster, Harry E.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 113
  • [27] Data-driven control of complex networks
    Giacomo Baggio
    Danielle S. Bassett
    Fabio Pasqualetti
    Nature Communications, 12
  • [28] A Data-driven Segmentation for the Shoulder Complex
    Hong, Q. Youn
    Park, Sang Il
    Hodgins, Jessica K.
    COMPUTER GRAPHICS FORUM, 2010, 29 (02) : 537 - 544
  • [29] Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network
    Xie, Xiaowei
    Spotte-Smith, Evan Walter Clark
    Wen, Mingjian
    Patel, Hetal D.
    Blau, Samuel M.
    Persson, Kristin A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (33) : 13245 - 13258
  • [30] A hybrid data-driven method for rapid prediction of lithium-ion battery capacity
    He, Jiabei
    Tian, Yi
    Wu, Lifeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 226