Data-driven prediction of complex crystal structures of dense lithium

被引:24
|
作者
Wang, Xiaoyang [1 ,2 ,3 ]
Wang, Zhenyu [1 ,2 ]
Gao, Pengyue [1 ,2 ]
Zhang, Chengqian [4 ,5 ]
Lv, Jian [1 ,2 ]
Wang, Han [3 ,6 ]
Liu, Haifeng [3 ]
Wang, Yanchao [1 ,2 ]
Ma, Yanming [1 ,2 ]
机构
[1] Jilin Univ, Coll Phys, Minist Educ, Key Lab Mat Simulat Methods & Software, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Fenghao East Rd 2, Beijing 100094, Peoples R China
[4] DP Technol, Beijing 100080, Peoples R China
[5] Peking Univ, Coll Engn, Beijing 100871, Peoples R China
[6] Peking Univ, Coll Engn, CAPT, HEDPS, Beijing 100871, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
SUPERCONDUCTIVITY; REPRESENTATION;
D O I
10.1038/s41467-023-38650-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium (Li) is a prototypical simple metal at ambient conditions, but exhibits remarkable changes in structural and electronic properties under compression. There has been intense debate about the structure of dense Li, and recent experiments offered fresh evidence for yet undetermined crystalline phases near the enigmatic melting minimum region in the pressure-temperature phase diagram of Li. Here, we report on an extensive exploration of the energy landscape of Li using an advanced crystal structure search method combined with a machine-learning approach, which greatly expands the scale of structure search, leading to the prediction of four complex Li crystal structures containing up to 192 atoms in the unit cell that are energetically competitive with known Li structures. These findings provide a viable solution to the observed yet unidentified crystalline phases of Li, and showcase the predictive power of the global structure search method for discovering complex crystal structures in conjunction with accurate machine learning potentials.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Data-driven prediction of complex crystal structures of dense lithium
    Xiaoyang Wang
    Zhenyu Wang
    Pengyue Gao
    Chengqian Zhang
    Jian Lv
    Han Wang
    Haifeng Liu
    Yanchao Wang
    Yanming Ma
    Nature Communications, 14 (1)
  • [2] Data-driven learning and prediction of inorganic crystal structures
    Deringer, Volker L.
    Proserpio, Davide M.
    Csanyi, Gabor
    Pickard, Chris J.
    FARADAY DISCUSSIONS, 2018, 211 : 45 - 59
  • [3] Data-Driven Prediction of Structures of Metal-Organic Frameworks
    Yakovenko, Elizaveta I.
    Nevolin, Iurii M.
    Chasovskikh, Anatoliy A.
    Mitrofanov, Artem A.
    Korolev, Vadim V.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (04) : 1718 - 1723
  • [4] Data-driven prediction of colonization outcomes for complex microbial communities
    Wu, Lu
    Wang, Xu-Wen
    Tao, Zining
    Wang, Tong
    Zuo, Wenlong
    Zeng, Yu
    Liu, Yang-Yu
    Dai, Lei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] A data-driven complex systems approach to early prediction of landslides
    Tordesillas, Antoinette
    Zhou, Zongzheng
    Batterham, Robin
    MECHANICS RESEARCH COMMUNICATIONS, 2018, 92 : 137 - 141
  • [6] Data-Driven Safety Risk Prediction of Lithium-Ion Battery
    Jia, Yikai
    Li, Jiani
    Yuan, Chunhao
    Gao, Xiang
    Yao, Weiran
    Lee, Minwoo
    Xu, Jun
    ADVANCED ENERGY MATERIALS, 2021, 11 (18)
  • [7] Data-driven electrical conductivities of dense plasmas
    Murillo, Michael S. S.
    FRONTIERS IN PHYSICS, 2022, 10
  • [8] A Data-Driven Approach of Product Quality Prediction for Complex Production Systems
    Ren, Lei
    Meng, Zihao
    Wang, Xiaokang
    Zhang, Lin
    Yang, Laurence T.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6457 - 6465
  • [9] Data-driven CFD modeling of turbulent flows through complex structures
    Wang, Jian-Xun
    Xiao, Heng
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2016, 62 : 138 - 149
  • [10] Data-driven coarse graining in action: Modeling and prediction of complex systems
    Krumscheid, S.
    Pradas, M.
    Pavliotis, G. A.
    Kalliadasis, S.
    PHYSICAL REVIEW E, 2015, 92 (04):