A cooperative hierarchical deep reinforcement learning based multi-agent method for distributed job shop scheduling problem with random job arrivals

被引:6
|
作者
Huang, Jiang-Ping [1 ]
Gao, Liang [1 ]
Li, Xin-Yu [1 ]
Zhang, Chun-Jiang [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Shop scheduling; Distributed manufacturing; Deep reinforcement learning; Multi-agent; GENETIC ALGORITHM; DISPATCHING RULES; MAKESPAN; MODEL; TIME;
D O I
10.1016/j.cie.2023.109650
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Distributed manufacturing can reduce the production cost through the cooperation among factories, and it has been an important trend in the industrial field. For the enterprises with daily delivered production tasks, the random job arrivals are regular. Thus, the Distributed Job-shop Scheduling Problem (DJSP) with random job arrivals is studied, and it is a typical case from the equipment manufacturing industry. The DJSP involves two coupled decision-making processes, job assigning and job sequencing, and the distributed and uncertain pro-duction environment requires the scheduling method to be more responsive and adaptive. Thus, a Deep Rein-forcement Learning (DRL) based multi-agent method is explored, and it is composed of the assigning agent and the sequencing agent. Two Markov Decision Processes (MDPs) are formulated for the two agents respectively. In the MDP for the assigning agent, fourteen factory-and-job related features are extracted as the state features, seven composite assigning rules are designed as the candidate actions, and the reward depends on the total processing time of different factories. In the MDP of the sequencing agent, five machine-and-job related features are set as the state features, six sequencing rules make up the action space, and the change of the factory makespan is the reward. Besides, to enhance the learning ability of the agents, a Deep Q-Network (DQN) framework with variable threshold probability in the training stage is designed, which can balance the exploi-tation and exploration in the model training. The proposed multi-agent method's effectiveness is proved by the independent utility test and the comparison test that are based on 1350 production instances, and its practical value in the actual production is implied by the case study from an automotive engine manufacturing company.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling with Random Job Arrival
    Chang, Jingru
    Yu, Dong
    Hu, Yi
    He, Wuwei
    Yu, Haoyu
    PROCESSES, 2022, 10 (04)
  • [22] A DEEP REINFORCEMENT LEARNING BASED SOLUTION FOR FLEXIBLE JOB SHOP SCHEDULING PROBLEM
    Han, B. A.
    Yang, J. J.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2021, 20 (02) : 375 - 386
  • [23] A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
    Xu, Shuai
    Li, Yanwu
    Li, Qiuyang
    ELECTRONICS, 2024, 13 (18)
  • [24] Deep Reinforcement Learning Method for Flexible Job Shop Scheduling
    Zhu, Zhengyu
    Guo, Jutao
    Lyu, Youlong
    Zuo, Liling
    Zhang, Jie
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2024, 35 (11): : 2007 - 2014
  • [25] Preference learning based deep reinforcement learning for flexible job shop scheduling problem
    Xinning Liu
    Li Han
    Ling Kang
    Jiannan Liu
    Huadong Miao
    Complex & Intelligent Systems, 2025, 11 (2)
  • [26] An effective multi-agent-based graph reinforcement learning method for solving flexible job shop scheduling problem
    Wan, Lanjun
    Fu, Long
    Li, Changyun
    Li, Keqin
    Engineering Applications of Artificial Intelligence, 2025, 139
  • [27] Deep reinforcement learning for flexible assembly job shop scheduling problem
    Hu Y.
    Zhang L.
    Bai X.
    Tang Q.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (02): : 153 - 160
  • [28] A Job-shop Scheduling Method Based on Multi-Agent Immune Algorithm
    Xu Xinli
    Hao Ping
    Wang Wanliang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 2527 - +
  • [29] Job Shop Dynamic Scheduling Model Based on Multi-Agent
    He, Li
    Liu, Yong-xian
    Xie, Hua-long
    Zhang, Yu
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 829 - +
  • [30] A multi-agent agile scheduling system for Job-Shop problem
    Wang, Zhanjie
    Liu, Yanbo
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, 2006, : 679 - +