A Yolo-based Violence Detection Method in IoT Surveillance Systems

被引:0
|
作者
Gao, Hui [1 ]
机构
[1] Xinxiang Univ, Coll Comp & Informat Engn, Xinxiang 453000, Henan, Peoples R China
关键词
Violence detection; IoT; surveillance systems; Yolo; deep learning;
D O I
10.14569/IJACSA.2023.0140817
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Violence detection in Internet of Things (IoT)-based surveillance systems has become a critical research area due to their potential to provide early warnings and enhance public safety. There have been many types of research on vision -based systems for violence detection, including traditional and deep learning-based methods. Deep learning-based methods have shown great promise in ameliorating the efficiency and accuracy of violence detection. Despite the recent advances in violence detection using deep learning-based methods, significant limitations and research challenges still need to be addressed, including the development of standardized datasets and real-time processing. This study presents a deep learning method based on You Only Look Once (YOLO) algorithm for the violence detection task to overcome these issues. We generate a model for violence detection using violence and non-violence images in a prepared dataset divided into testing, validation, and training sets. Based on accepted performance indicators, the produced model is assessed. The experimental results and performance evaluation show that the method accurately identifies violence and non-violence classes in real-time.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [31] A new YOLO-based method for real-time crowd detection from video and performance analysis of YOLO models
    Mehmet Şirin Gündüz
    Gültekin Işık
    Journal of Real-Time Image Processing, 2023, 20
  • [32] Experimental Study on YOLO-Based Leather Surface Defect Detection
    Chen, Zhiqiang
    Zhu, Qirui
    Zhou, Xiaofan
    Deng, Jiehang
    Song, Wei
    IEEE ACCESS, 2024, 12 : 32830 - 32848
  • [33] YOLO-based robotic grasping
    Kim, Munhyeong
    Kim, Sungho
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 1120 - 1122
  • [34] Target detection method of primary surveillance radar based on YOLO
    Shi D.
    Lin Q.
    Hu B.
    Du X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (01): : 143 - 151
  • [35] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574
  • [36] Evaluating the optimised YOLO-based defect detection method for subsurface diagnosis with ground penetrating radar
    Zhu, Jiasong
    Zhao, Dingyi
    Luo, Xianghuan
    ROAD MATERIALS AND PAVEMENT DESIGN, 2024, 25 (01) : 186 - 203
  • [37] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [38] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [39] Light-YOLO: A Lightweight and Efficient YOLO-Based Deep Learning Model for Mango Detection
    Zhong, Zhengyang
    Yun, Lijun
    Cheng, Feiyan
    Chen, Zaiqing
    Zhang, Chunjie
    AGRICULTURE-BASEL, 2024, 14 (01):
  • [40] YOLO-Based Deep Learning Model for Pressure Ulcer Detection and Classification
    Aldughayfiq, Bader
    Ashfaq, Farzeen
    Jhanjhi, N. Z.
    Humayun, Mamoona
    HEALTHCARE, 2023, 11 (09)