Deep learning-driven diagnosis: A multi-task approach for segmenting stroke and Bell's palsy

被引:15
|
作者
Umirzakova, Sabina [1 ]
Ahmad, Shabir [1 ]
Mardieva, Sevara [1 ]
Muksimova, Shakhnoza [1 ]
Whangbo, Taeg Keun [2 ]
机构
[1] Gachon Univ, Dept IT Convergence Engn, Seongnam, South Korea
[2] Gachon Univ, Dept Comp Sci, Seongnam, South Korea
关键词
Segmentation; Face parsing; Early stroke detection; Bell 's palsy detection; NETWORK;
D O I
10.1016/j.patcog.2023.109866
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Strong efforts have been undertaken to enhance the diagnosis and identification of diseases that cause facial paralysis, such as Bell's palsy and stroke, because of their detrimental social effects. Stroke is one of the most serious and potentially fatal conditions among the major cardiovascular disorders. We are introducing a deeplearning-based method for early diagnosis of facial paralysis diseases such as stroke and Bell's palsy. Recognizing the costs associated with traditional diagnostic techniques like magnetic resonance tomography (MRI) and computed tomography (CT) scan images, our model employs a multi-task network, integrating face parsing, facial asymmetry parsing, and category enhancement. Spatial inconsistencies are addressed via a depth-map estimation module that leverages an instance-specific kernel approach. To clarify the boundaries of facial components, we use category edge detection with a foreground attention module, generating generic geometric structures and detailed semantic cues. Our model is trained on two datasets, comprising individuals with regular smiles and those with one-sided facial weakness. This cost-effective, easily accessible solution can streamline the diagnostic process, minimizing data gaps, and reducing needless rescreening and intervention costs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Attentive Multi-task Deep Reinforcement Learning
    Bram, Timo
    Brunner, Gino
    Richter, Oliver
    Wattenhofer, Roger
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 134 - 149
  • [22] Multi-task Learning for Deep Semantic Hashing
    Ma, Lei
    Li, Hongliang
    Wu, Qingbo
    Shang, Chao
    Ngan, Kingngi
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [23] A Survey of Multi-Task Deep Reinforcement Learning
    Vithayathil Varghese, Nelson
    Mahmoud, Qusay H.
    ELECTRONICS, 2020, 9 (09) : 1 - 21
  • [24] Multi-Task Deep Reinforcement Learning with PopArt
    Hessel, Matteo
    Soyer, Hubert
    Espeholt, Lasse
    Czarnecki, Wojciech
    Schmitt, Simon
    van Hasselt, Hado
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3796 - 3803
  • [25] Cancer Classification with Multi-task Deep Learning
    Liao, Qing
    Jiang, Lin
    Wang, Xuan
    Zhang, Chunkai
    Ding, Ye
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 76 - 81
  • [26] Deep Learning for Multi-task Plant Phenotyping
    Pound, Michael P.
    Atkinson, Jonathan A.
    Wells, Darren M.
    Pridmore, Tony P.
    French, Andrew P.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 2055 - 2063
  • [27] Multi-task Deep Learning for Image Understanding
    Yu, Bo
    Lane, Ian
    2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR), 2014, : 37 - 42
  • [28] Deep Asymmetric Multi-task Feature Learning
    Lee, Hae Beom
    Yang, Eunho
    Hwang, Sung Ju
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [29] Gearbox fault diagnosis method based on deep learning multi-task framework
    Chen, Yao
    Liang, Ruijun
    Ran, Wenfeng
    Chen, Weifang
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2023, 14 (03) : 401 - 415
  • [30] A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease
    Nianyin Zeng
    Han Li
    Yonghong Peng
    Neural Computing and Applications, 2023, 35 : 11599 - 11610