Asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift

被引:0
|
作者
Zhang, Xuekang [1 ,2 ]
机构
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[2] Anhui Polytech Univ, Key Lab Adv Percept & Intelligent Control High End, Minist Educ, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimators; Ornstein-Uhlenbeck process; large linear drift; law of iterated logarithm; consistency; asymptotic distributions; SHARP LARGE DEVIATIONS; PARAMETERS;
D O I
10.1142/S0219493723500247
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift dX(t) = -1/epsilon (theta X-t - epsilon(1/2) nu)dt + dB(t), 0 <= t <= T, where theta, nu is an element of R, and { B-t }(t >= 0) is a given standard Brownian motion. The law of iterated logarithm, consistency and asymptotic distributions of the estimators are discussed based on the continuous observation {X-t}(t is an element of[0,T]) as epsilon -> 0.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [41] A large deviation result for maximum likelihood estimator of non-homogeneous Ornstein-Uhlenbeck processes
    Zhao, Shoujiang
    Liu, Qiaojing
    STATISTICS & PROBABILITY LETTERS, 2020, 162
  • [42] Rate of convergence for the maximum likelihood estimator in fractional Ornstein-Uhlenbeck processes
    Sun, Lin
    Liu, Youzhu
    Xu, Weijun
    Xiao, Weilin
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2012, 15 (02): : 461 - 466
  • [43] Sequential maximum likelihood estimation for reflected generalized Ornstein-Uhlenbeck processes
    Bo, Lijun
    Yang, Xuewei
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1374 - 1382
  • [44] A note on inference for the mixed fractional Ornstein-Uhlenbeck process with drift
    Cai, Chunhao
    Zhang, Min
    AIMS MATHEMATICS, 2021, 6 (06): : 6439 - 6453
  • [45] ASYMPTOTIC SIZE OF THE ORNSTEIN-UHLENBECK PROCESSES
    STOICA, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (04): : 485 - 488
  • [46] Asymptotic expansions and large deviations in estimation of an Ornstein-Uhlenbeck model
    Florens-Landais, D
    Gautherat, E
    Nisipasu, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (02): : 205 - 210
  • [47] Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process
    Liang Shen
    Qingsong Xu
    Advances in Difference Equations, 2014
  • [48] Relativistic Ornstein-Uhlenbeck process
    Debbasch, F
    Mallick, K
    Rivet, JP
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) : 945 - 966
  • [49] The generalized Ornstein-Uhlenbeck process
    Caceres, MO
    Budini, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8427 - 8444
  • [50] Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process
    Shen, Liang
    Xu, Qingsong
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,