Dual-phase synergistic deformation characteristics and strengthening mechanism of AlCoCrFeNi2.1 eutectic high entropy alloy fabricated by laser powder bed fusion

被引:29
|
作者
Tang, Xu [1 ,2 ]
Zhang, Hao [1 ,3 ]
Zhu, Zhengwang [1 ]
Xue, Peng [1 ,3 ]
Wu, Lihui [1 ,3 ]
Liu, Fengchao [1 ]
Ni, Dingrui [1 ]
Xiao, Bolv [1 ]
Ma, Zongyi [1 ,3 ]
机构
[1] Chinese Acad Sci, Shichangxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Met Res, Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Laser powder bed fusion; Remelting; Eutectic high entropy alloy; Microstructure; Deformation mechanism; CO-SB; MICROSTRUCTURE; DUCTILITY; SOLIDIFICATION; GROWTH;
D O I
10.1016/j.jmst.2022.11.045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Eutectic high entropy alloy (EHEA) possesses promising prospects for industrial application due to its controllable and near-equilibrium dual-phase structure. Due to the advantages of high material utiliza-tion, efficient production, and design freedom, the laser powder bed fusion (LPBF) technique provides a new path to prepare EHEA components with complex structure and excellent performance. In this study, near fully dense AlCoCrFeNi2.1 samples were obtained by adjusting the process parameters of LPBF. Con-sidering the balling phenomenon and powder splashing during the LPBF process, laser remelting was selected as an optimized scanning strategy to further improve the forming quality of AlCoCrFeNi2.1. The microstructure of remelted AlCoCrFeNi2.1 sample exhibited regular eutectic lamellae consisting of nano-scale face-centered-cubic (FCC) and B2 phases, in which the FCC phase accounted for a higher proportion. By investigating the tensile behavior and deformation mechanism, it was revealed that the ultrafine eu-tectic lamellae could induce a strong dual-phase synergistic strengthening, thereby significantly improv-ing the strength of the sample. Compared with the vacuum induction melted (VIM) sample, the remelted sample showed a 54% increase in ultimate tensile strength (UTS-1518 MPa) and a 130% increase in yield strength (YS-1235 MPa) with reasonable plasticity. This study indicates that by combining the design and manufacturing freedom of LPBF with the EHEA, it is expected to fabricate high-property 3D EHEA parts, expanding the application field of EHEA. (c) 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [21] Understanding the microstructure evolution characteristics and mechanical properties of an AlCoCrFeNi2.1 high entropy alloy fabricated by laser energy deposition
    Guo, Weimin
    Zhang, Yan
    Ding, Ning
    Liu, Long
    Xu, Huixia
    Xu, Na
    Tian, Linan
    Liu, Guoqiang
    Dong, Dexiao
    Wang, Xiebin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869
  • [22] Study on Large Plastic Deformation Mechanism of AlCoCrFeNi2.1 Eutectic High-Entropy Alloys Prepared by Laser Additive Manufacturing
    Zhang, Xin
    Cui, Yan
    Cai, Yangchuan
    Liu, Shuai
    Jing, Tian
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [23] Unleashing the microstructural evolutions during hot deformation of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy
    Charkhchian, J.
    Zarei-Hanzaki, A.
    Schwarz, T. M.
    Lawitzki, R.
    Schmitz, G.
    Schell, N.
    Shen, Jiajia
    Oliveira, J. P.
    Waryoba, Daudi
    Abedi, H. R.
    INTERMETALLICS, 2024, 168
  • [24] Phase selection and mechanical properties of directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy
    Peng, Peng
    Li, Shengyuan
    Chen, Weiqi
    Xu, Yuanli
    Zhang, Xudong
    Ma, Zhikun
    Wang, Jiatai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898
  • [25] Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding
    Li, Peng
    Sun, Haotian
    Dong, Honggang
    Xia, Yueqing
    Wang, Shuai
    Hao, Xiaohu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 814
  • [26] Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Coatings Fabricated by Extreme High-Speed and Conventional Laser Cladding
    Jia Wang
    Yang Li
    Bingwen Lu
    Jin Liu
    Na Tan
    Yujie Zhou
    Yujun Cai
    Zichuan Lu
    Journal of Thermal Spray Technology, 2024, 33 : 992 - 1005
  • [27] Microstructure and Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Coatings Fabricated by Extreme High-Speed and Conventional Laser Cladding
    Wang, Jia
    Li, Yang
    Lu, Bingwen
    Liu, Jin
    Tan, Na
    Zhou, Yujie
    Cai, Yujun
    Lu, Zichuan
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2024, 33 (04) : 992 - 1005
  • [28] Experimental and finite element simulation studies on hot deformation behaviour of AlCoCrFeNi2.1 eutectic high entropy alloy
    Rahul, M. R.
    Samal, Sumanta
    Venugopal, S.
    Phanikumar, Gandham
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 : 1115 - 1127
  • [29] Deformation and strengthening mechanisms in finely heterostructured AlCoCrFeNi2.1 eutectic high-entropy alloys with enhanced strength and ductility
    Ke, Yujiao
    Wang, Jiasheng
    Peng, Chong
    Liu, Haoran
    Niu, Haozhe
    Wang, Kaiyao
    Chen, Yifei
    Yu, Sichen
    Liu, Shucheng
    Xu, Zhefeng
    Tang, Hu
    Matsugi, Kazuhiro
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 : 7167 - 7179
  • [30] A novel strengthening strategy for diffusion bonded joint of AlCoCrFeNi2.1 eutectic high entropy alloy to 304 stainless steel
    LI, Peng
    Sun, Hao-tian
    LI, Chao
    Wu, Bao-sheng
    Yang, Jiang
    Jiang, Yu
    Dong, Hong-gang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (07) : 2121 - 2135