Stable intersections of conformal Cantor sets

被引:1
|
作者
Araujo, Hugo [1 ]
Moreira, Carlos Gustavo [2 ]
机构
[1] Univ Fed Ouro Preto, Dept Ciencias Exatas & Aplicadas, BR-35931008 Joao Monlevade, MG, Brazil
[2] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Cantor sets; smooth dynamics; bifurcation theory; symbolic dynamics; NEIGHBORHOODS; MAPS;
D O I
10.1017/etds.2021.97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate stable intersections of conformal Cantor sets and their consequences to dynamical systems. First we define this type of Cantor set and relate it to horseshoes appearing in automorphisms of C-2. Then we study limit geometries, that is, objects related to the asymptotic shape of the Cantor sets, to obtain a criterion that guarantees stable intersection between some configurations. Finally, we show that the Buzzard construction of a Newhouse region on Aut(C-2) can be seen as a case of stable intersection of Cantor sets in our sense and give some (not optimal) estimate on how 'thick' those sets have to be.
引用
收藏
页码:1 / 49
页数:49
相关论文
共 50 条
  • [31] Julia sets and wild Cantor sets
    Alastair Fletcher
    Jang-Mei Wu
    Geometriae Dedicata, 2015, 174 : 169 - 176
  • [32] On the intersection of Cantor τ-sets
    Moshchevitin, NG
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (01) : 155 - 156
  • [33] Sums of Cantor sets
    Cabrelli, CA
    Hare, KE
    Molter, UM
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 1299 - 1313
  • [34] Parabolic Cantor sets
    Urbanski, M
    FUNDAMENTA MATHEMATICAE, 1996, 151 (03) : 241 - 277
  • [35] A Characteristic of Cantor Sets
    麦结华
    柳州师专学报, 2013, 28 (01) : 108 - 110
  • [36] Hairy Cantor sets
    Cheraghi, Davoud
    Pedramfar, Mohammad
    ADVANCES IN MATHEMATICS, 2022, 398
  • [37] Nested Cantor sets
    Pierre Berger
    Carlos Gustavo Moreira
    Mathematische Zeitschrift, 2016, 283 : 419 - 435
  • [38] SCRAMBLED CANTOR SETS
    Geschke, Stefan
    Grebik, Jan
    Miller, Benjamin D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (10) : 4461 - 4468
  • [39] Nested Cantor sets
    Berger, Pierre
    Moreira, Carlos Gustavo
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 419 - 435
  • [40] EMBEDDING CANTOR SETS IN A MANIFOLD .I. TAME CANTOR SETS IN EN
    OSBORNE, RP
    MICHIGAN MATHEMATICAL JOURNAL, 1966, 13 (01) : 57 - &