Stable intersections of conformal Cantor sets

被引:1
|
作者
Araujo, Hugo [1 ]
Moreira, Carlos Gustavo [2 ]
机构
[1] Univ Fed Ouro Preto, Dept Ciencias Exatas & Aplicadas, BR-35931008 Joao Monlevade, MG, Brazil
[2] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Cantor sets; smooth dynamics; bifurcation theory; symbolic dynamics; NEIGHBORHOODS; MAPS;
D O I
10.1017/etds.2021.97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate stable intersections of conformal Cantor sets and their consequences to dynamical systems. First we define this type of Cantor set and relate it to horseshoes appearing in automorphisms of C-2. Then we study limit geometries, that is, objects related to the asymptotic shape of the Cantor sets, to obtain a criterion that guarantees stable intersection between some configurations. Finally, we show that the Buzzard construction of a Newhouse region on Aut(C-2) can be seen as a case of stable intersection of Cantor sets in our sense and give some (not optimal) estimate on how 'thick' those sets have to be.
引用
收藏
页码:1 / 49
页数:49
相关论文
共 50 条
  • [1] Stable intersections of affine cantor sets
    Honary, B
    Moreira, CG
    Pourbarat, M
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2005, 36 (03): : 363 - 378
  • [2] Stable intersections of affine cantor sets
    Bahman Honary
    Carlos G. Moreira
    Mahdi Pourbarat
    Bulletin of the Brazilian Mathematical Society, 2005, 36 : 363 - 378
  • [3] Stable intersections of Cantor sets and homoclinic bifurcations
    Moreira, CGTD
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06): : 741 - 781
  • [4] There are no C1-stable intersections of regular Cantor sets
    Moreira, Carlos Gustavo
    ACTA MATHEMATICA, 2011, 206 (02) : 311 - 323
  • [5] Stable intersections of regular Cantor sets with large Hausdorff dimensions
    Moreira, CGTD
    Yoccoz, JC
    ANNALS OF MATHEMATICS, 2001, 154 (01) : 45 - 96
  • [6] INTERSECTIONS OF THICK CANTOR SETS
    KRAFT, R
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 97 (468) : R3 - 119
  • [7] Affine embeddings and intersections of Cantor sets
    Feng, De-Jun
    Huang, Wen
    Rao, Hui
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (06): : 1062 - 1079
  • [8] ON INTERSECTIONS OF CANTOR SETS: HAUSDORFF MEASURE
    Pedersen, Steen
    Phillips, Jason D.
    OPUSCULA MATHEMATICA, 2013, 33 (03) : 575 - 598
  • [9] Intersections of Homogeneous Cantor Sets with Their Translations
    Mei Feng DAI Nonlinear Scientific Research Center
    Acta Mathematica Sinica,English Series, 2008, 24 (08) : 1313 - 1318
  • [10] Unique expansions and intersections of Cantor sets
    Baker, Simon
    Kong, Derong
    NONLINEARITY, 2017, 30 (04) : 1497 - 1512