Post-synthetic modification of UiO-66 analogue metal-organic framework as potential solid sorbent for direct air capture

被引:10
|
作者
Abdelnaby, Mahmoud M. [1 ]
Tayeb, Islam M. [1 ,2 ]
Alloush, Ahmed M. [1 ]
Alyosef, Hussain A. [1 ]
Alnoaimi, Aljazi [1 ]
Zeama, Mostafa [1 ]
Mohammed, Mohammed G. [1 ,3 ]
Onaizi, Sagheer A. [1 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Hydrogen & Energy Storag, Dhahran 31261, Saudi Arabia
[2] Duke Univ, Pratt Sch Engn, Durham, NC 27710 USA
[3] King Fahd Univ Petr & Minerals KFUPM, Dept Chem Engn, Dhahran 31261, Saudi Arabia
关键词
Carbon dioxide capture; Direct air capture; Metal-organic framework; Amine functionalization; Dynamic breakthrough; UiO-66; APTES; CO2; ADSORPTION; SELECTIVITY;
D O I
10.1016/j.jcou.2023.102647
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct air capture (DAC) offers a powerful strategy to counteract climate change by reducing the carbon dioxide levels in the air. Developing sorbent materials capable of sucking carbon dioxide gas continuously emitted into our atmosphere is critical. In this work, we present a functionalization strategy for a metal-organic framework (UiO-66), intending to increase the uptake and selectivity for capturing carbon dioxide at its ppm levels from the multi-component mixture of air. (3-Aminopropyl)triethoxysilane (APTES) was used to chemically modify the hydroxyl analog of UiO-66 (UiO-66-(OH)(2)) framework to form UiO-66-APTES. The developed UiO-66-APTES fully characterized using several analytical techniques, such as Fourier Transform Infrared spectroscopy (FTIR), Powder X-ray diffraction (PXRD), and X-ray photoelectron microscopy (XPS). The calculated BET surface areas of UiO-66-(OH)(2) and UiO-66-APTES were 752 m(2) g(-1) and 381 m(2) g(-1), respectively. Although the surface area decreased, adding several aliphatic amine groups enhanced the CO2 adsorption capacity, at 298 K and 1 bar, from 42.7 cm(3) g(-1) to 65.6 cm(3) g(-1,) exhibiting a similar to 150 % improvement over the unfunctionalized sample. Not only was the material proven to be selective for CO2 within a CO2/N-2 gas mixture with a high selectivity of 160, but it also showed a mere marginal reduction in performance (i.e., CO2 uptake capacity) after 15 cycles. Moreover, the UiO-66-APTES system was used for the dynamic separation of CO2 from air mixture, revealing its potential as an attractive adsorbent for direct air capture.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Electrochemical Film Deposition of the Zirconium Metal-Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap
    Stassen, Ivo
    Styles, Mark
    Van Assche, Tom
    Campagnol, Nicolo
    Fransaer, Jan
    Denayer, Joeri
    Tan, Jin-Chong
    Falcaro, Paolo
    De Vos, Dirk
    Ameloot, Rob
    CHEMISTRY OF MATERIALS, 2015, 27 (05) : 1801 - 1807
  • [22] Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications
    Figueroa-Quintero, Leidy
    Villalgordo-Hernandez, David
    Delgado-Marin, Jose J.
    Narciso, Javier
    Velisoju, Vijay Kumar
    Castano, Pedro
    Gascon, Jorge
    Ramos-Fernandez, Enrique V.
    SMALL METHODS, 2023, 7 (04):
  • [23] Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and Its Effect on Polymer-Metal Organic Framework Interaction
    Smith, Stefan J. D.
    Konstas, Kristina
    Lau, Cher Hon
    Gozukara, Yesim M.
    Easton, Christopher D.
    Mulder, Roger J.
    Ladewig, Bradley P.
    Hill, Matthew R.
    CRYSTAL GROWTH & DESIGN, 2017, 17 (08) : 4384 - 4392
  • [24] Synthesis and hydrogen storage studies of metal-organic framework UiO-66
    Zhao, Qiang
    Yuan, Wen
    Liang, Jianming
    Li, Jinping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 13104 - 13109
  • [25] Computational study of Bronsted acidity in the metal-organic framework UiO-66
    Chen, Haoyuan
    CHEMICAL PHYSICS LETTERS, 2022, 800
  • [26] Memristive behavior of UiO-66 metal-organic framework single crystal
    Bachinin, Semyon V.
    Lubimova, Anastasia
    Povarov, Svyatoslav A.
    Zubok, Dmitrii
    Okoneshnikova, Elizaveta
    Kulakova, Alena N.
    Rzhevskiy, Sergey S.
    Milichko, Valentin A.
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2024, 58
  • [27] On the intrinsic dynamic nature of the rigid UiO-66 metal-organic framework
    Hajek, Julianna
    Caratelli, Chiara
    Demuynck, Ruben
    De Wispelaere, Kristof
    Vanduyfhuys, Louis
    Waroquier, Michel
    Van Speybroeck, Veronique
    CHEMICAL SCIENCE, 2018, 9 (10) : 2723 - 2732
  • [28] An efficient modulated synthesis of zirconium metal-organic framework UiO-66
    Chen, Xia
    Li, Yongjie
    Fu, Qiang
    Qin, Hongyun
    Lv, Junnan
    Yang, Kun
    Zhang, Qicheng
    Zhang, Hui
    Wang, Ming
    RSC ADVANCES, 2022, 12 (10) : 6083 - 6092
  • [29] Electroactive Ferrocene at or near the Surface of Metal-Organic Framework UiO-66
    Palmer, Rebecca H.
    Liu, Jian
    Kung, Chung-Wei
    Hod, Idan
    Farha, Omar K.
    Hupp, Joseph T.
    LANGMUIR, 2018, 34 (16) : 4707 - 4714
  • [30] Free Energy of Ligand Removal in the Metal-Organic Framework UiO-66
    Bristow, Jessica K.
    Svane, Katrine L.
    Tiana, Davide
    Skelton, Jonathan M.
    Gale, Julian D.
    Walsh, Aron
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (17): : 9276 - 9281