Design of Layer Structure Metal Oxide Material with Dual-Ion Defects for High-Performance Aqueous Zn Ion Batteries

被引:3
|
作者
Li, Yuying [1 ]
Guo, Xinli [1 ]
Cao, Zhen [1 ]
Wang, Shaohua [1 ]
Fu, Qiuping [1 ]
Zheng, Yanmei [1 ]
Qu, Junnan [1 ]
Li, Ruiting [1 ]
Zhao, Li [1 ]
Luo, Dan [2 ]
Chen, Zhongwei [3 ]
机构
[1] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Adv Met Mat, Nanjing 211189, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Power Battery & Syst Res Ctr, Dalian 116023, Peoples R China
[3] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
aqueous Zn ion battery; potassium titanate; dual-ion defects; interlaminarK vacancies; layeredge O vacancies; POTASSIUM; VACANCIES;
D O I
10.1021/acssuschemeng.3c03418
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layer structure metal oxides are promising energy storage materials for rechargeable batteries. However, they are still hindered by insufficient ion storage sites and sluggish ion diffusion kinetics during ion insertion/extraction, leading to unsatisfactory battery performance. Herein, we have successfully designed layer structure metal oxides with regulated dual-ion defects via the ion exchange and annealing processes. As for demonstration, a KivTOev@Ti anode with dual-ion defects by incorporating with the interlaminar K vacancies and layer edge O vacancies in layer structure potassium titanate (KTO) was synthesized for Zn ion batteries. The bionic defects in the KivTOev@Ti anode are indicated to provide extra space for potent Zn ion storage and enhance the Zn ion diffusion rate. Complete inner layer structure and residual interlayer K ion pillars ensure that the KivTOev@Ti anode has highly structural stability and reversible electrochemistry. Therefore, KivTOev@Ti delivers a favorable Zn ion storage capability of 179.2 mAh g(-)(1) at 0.05 A g(-1), and a remarkable cycling stability of 82% capacity retention after 5000 cycles at 0.5 A g(-1). The ZnxMnO2//KivTOev@Ti full cell presents an excellent power/energy density of 583.5 W kg(-1)/97.8 Wh kg(-1), respectively, and maintains a capacity retention of 90% after 5000 cycles. This work can enlighten material engineering for energy storage area.
引用
收藏
页码:15273 / 15281
页数:9
相关论文
共 50 条
  • [11] Strategies for improving cathode electrolyte interphase in high-performance dual-ion batteries
    He, Yitao
    Chen, Zhipeng
    Zhang, Yaohui
    ISCIENCE, 2024, 27 (08)
  • [12] Charge Carriers for Aqueous Dual-Ion Batteries
    Wang, Shaofeng
    Guan, Ying
    Gan, Fangqun
    Shao, Zongping
    CHEMSUSCHEM, 2023, 16 (04)
  • [13] Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte
    Sun, Lu
    Yao, Yuanqing
    Dai, Lixin
    Jiao, Miaolun
    Ding, Baofu
    Yu, Qiangmin
    Tang, Jun
    Liu, Bilu
    ENERGY STORAGE MATERIALS, 2022, 47 : 187 - 194
  • [14] Spent Carbon Cathode Used as a Cathode Material for High-Performance Dual-Ion Batteries: High-Value Utilization
    Huang, Wenlong
    Meng, Bicheng
    Li, Jie
    Yang, Kai
    Fang, Zhao
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11) : 14487 - 14495
  • [15] FePO4 as an anode material to obtain high-performance sodium-based dual-ion batteries
    Li, Chao
    Wang, Xiaohong
    Li, Jiayu
    Wang, Hongyu
    CHEMICAL COMMUNICATIONS, 2018, 54 (34) : 4349 - 4352
  • [16] High-Performance Aqueous Calcium Ion Batteries Enabled by Zn Metal Anodes with Stable Ion-Conducting Interphases
    Guo, Weihua
    Tian, Fei
    Fu, Danchen
    Cui, Hao
    Song, Huawei
    Wang, Chengxin
    NANO LETTERS, 2024, 24 (39) : 12095 - 12101
  • [17] Tailoring the solvation shells of dual metal ions for high-performance aqueous zinc ion batteries
    Xu, Xin
    Feng, Xiang
    Li, Mingyan
    Yin, Junyi
    Li, Fuxiang
    Chen, Jingzhe
    Shi, Weichen
    Cheng, Yonghong
    Wang, Jianhua
    CHEMICAL ENGINEERING JOURNAL, 2023, 478
  • [18] Fluorination Treatment of Conjugated Protonated Polyanilines for High-Performance Sodium Dual-Ion Batteries
    Sun, Zhiqin
    Zhu, Kunjie
    Liu, Pei
    Chen, Xuchun
    Li, Haixia
    Jiao, Lifang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (42)
  • [19] Electrochemically Exfoliated Graphene Electrode for High-Performance Rechargeable Chloroaluminate and Dual-Ion Batteries
    Ejigu, Andinet
    Le Fevre, Lewis W.
    Fujisawa, Kazunori
    Terrones, Mauricio
    Forsyth, Andrew J.
    Dryfe, Robert A. W.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (26) : 23261 - 23270
  • [20] Freestanding Cathode Electrode Design for High-Performance Sodium Dual-Ion Battery
    Liao, Hsiang-Ju
    Chen, Yu-Mei
    Kao, Yu -Ting
    An, Ji-Yao
    Lai, Ying-Huang
    Wang, Di-Yan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (44): : 24463 - 24469