Orlicz dual of log-Aleksandrov-Fenchel inequality

被引:0
|
作者
Zhao, Chang-Jian [1 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
dual mixed volume; L-p-dual mixed volume; Orlicz multiple dual mixed volume; dual logarithmic Minkowski inequality; dual Aleksandrov-Fenchel inequality; MINKOWSKI INEQUALITY; BODIES;
D O I
10.15672/hujms.1038461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish an Orlicz dual of the log-Aleksandrov-Fenchel inequality, by introducing two new concepts of dual mixed volume measures, and using the newly established Orlicz dual Aleksandrov-Fenchel inequality. The Orlicz dual log-Aleksandrov-Fenchel inequality in special cases yields the classical dual Aleksandrov-Fenchel inequality and some dual logarithmic Minkowski type inequalities, respectively. Moreover, the dual log-Aleksandrov-Fenchel inequality is therefore also derived.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 50 条
  • [21] ORLICZ DUAL LOGARITHMIC MINKOWKI INEQUALITY
    Zhao, Chang-Jian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1031 - 1032
  • [22] STABILITY IN THE ALEKSANDROV-FENCHEL-JESSEN THEOREM
    SCHNEIDER, R
    MATHEMATIKA, 1989, 36 (71) : 50 - 59
  • [23] Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals
    Wang, Weidong
    Shi, Wei
    Ye, Si
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (04): : 721 - 735
  • [24] The Aleksandrov-Fenchel type inequalities for volume differences
    Zhao, Chang-jian
    Bencze, Mihaly
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (01): : 163 - 172
  • [25] On the existence of solutions to the Orlicz Aleksandrov problem
    Hu, Zejun
    Li, Hai
    GEOMETRIAE DEDICATA, 2023, 217 (03)
  • [26] On the existence of solutions to the Orlicz Aleksandrov problem
    Zejun Hu
    Hai Li
    Geometriae Dedicata, 2023, 217
  • [27] Dual Mixed Orlicz-Brunn-Minkowski Inequality and The General Dual Orlicz Mixed Volume
    Zhang, Ping
    Zhang, Xiaohua
    ENGINEERING LETTERS, 2024, 32 (02) : 220 - 225
  • [28] Lp-Minkowski and Aleksandrov-Fenchel type inequalities
    Zhao, Chang-jian
    Bencze, Mihaly
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2009, 14 (02): : 128 - 137
  • [29] ON BONNESEN-STYLE ALEKSANDROV-FENCHEL INEQUALITIES IN Rn
    Zeng, Chunna
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) : 799 - 816
  • [30] Aleksandrov-Fenchel不等式及应用
    赵长健
    冷岗松
    数学年刊A辑(中文版), 2005, (04) : 585 - 594